Дба расшифровка как читается. Шумовое загрязнение: как защититься? Что и как шумит в кондиционере

Дба расшифровка как читается. Шумовое загрязнение: как защититься? Что и как шумит в кондиционере
Дба расшифровка как читается. Шумовое загрязнение: как защититься? Что и как шумит в кондиционере

Очень часто новички сталкивается с таким понятием, как децибел . Многие из них интуитивно догадываются, что это такое, но у большинства до сих пор возникают вопросы.

Относительные логарифмические единицы Белы (децибелы) широко используются при количественных оценках параметров различных аудио, видео, измерительных устройств. Физическая природа сравниваемых мощностей может быть любой - электрической, электромагнитной, акустической, механической, - важно лишь, чтобы обе величины были выражены в одинаковых единицах - ваттах, милливаттах и т. п. Бел выражает отношение двух значений энергетической величины десятичным логарифмом этого отношения, причем под энергетическими величинами понимаются: мощность, энергия.

Кстати, эта единица получила свое название в честь Александра Белл (1847 – 1922) – американского ученого шотландского происхождения, основоположника телефонии, основателя всемирно известных компаний AT&T и “Bell Laboratories”. Еще интересно напомнить, что во многих современных мобильных телефонах (смартфонах) обязательно есть выбираемый звук звонка (оповещения), так и называемый “bell”. Впрочем, Бел относится к единицам, не входящим в Международную систему единиц (СИ), но в соответствии с решением Международного комитета мер и весов допускается к применению без ограничений совместно с единицами СИ. В основном применяется в электросвязи, акустике, радиотехнике.

Формулы для вычисления децибелов

Бел (Б) = lg (P2/P1)

где

На практике, оказалось, что удобнее пользоваться уменьшенным в 10 раз значением Бел, т.е. децибел, поэтому:

дециБел (дБ) = 10 * lg(P2/P1)

Усиление или ослабление мощности в децибелах выражается формулой:

где

P 1 – мощность до усиления, Вт

P 2 – мощность после усиления или ослабления, Вт

Значения Бел, децибел могут быть со знаком “плюс”, если P2 > P1 (усиление сигнала) и со знаком “минус”, если P2 < P1 (ослабление сигнала)

Во многих случаях, сравнение сигналов путем измерения мощностей может быть неудобным или невозможным – проще измерить напряжение или ток.
В этом случае, если мы сравниваем напряжения или токи, формула примет уже другой вид:


где

N дБ – усиление, либо ослабление мощности в децибелах

U 1 – это напряжение до усиления, В

I 1 – сила тока до усиления, А

I 2 – сила тока после усиления, А

Вот небольшая табличка, в которой приведены основные отношения напряжений и соответствующее число децибел:

Дело в том, что операции умножения и деления над числами в обычном базисе, заменяются операциями сложения и вычитания в логарифмическом базисе. Например, у нас есть два каскадно-включенных усилителя с коэффициентами усиления K1 = 963 и K2 = 48. Какой общий коэффициент усиления? Правильно – он равен произведению K = K1 * K2. Вы можете в уме быстро вычислить 963*48? Я – нет. Я могу прикинуть K = 1000*50 = 50 тыс., не более. А, если нам известно, что K1 = 59 дБ и K2 = 33 дБ, то К = 59+33 = 92 дБ – сложить было не трудно, надеюсь.

Впрочем, актуальность таких вычислений было велика в эпоху, когда ввели понятие Бел и когда не было не то, что айфонов, но и электронных калькуляторов. Сейчас же достаточно открыть калькулятор на ваших гаджетах и быстренько посчитать, что есть что. Ну и чтобы не париться каждый раз при переводе дБ в разы, удобнее всего найти в интернете онлайн-калькулятор. Да хотя бы вот .

Закон Вебера-Фехнера

Почему именно децибелы? Все исходит от закона Вебера-Фехнера, который говорит нам, что интенсивность ощущения человеческих чувств прямо-пропорциональна логарифму интенсивности какого-либо раздражителя.


Так светильник, в котором восемь лампочек, кажется нам настолько же ярче светильника из четырёх лампочек, насколько светильник из четырёх лампочек ярче светильника из двух лампочек. То есть количество лампочек должно увеличиваться каждый раз вдвое, чтобы нам казалось, что прирост яркости постоянен. То есть если добавить к нашим 32 лампочкам на графике еще одну лампочку, то мы даже и не заметим разницы. Для того, чтобы для нашего глаза была заметна разница, мы должны к 32 лампочкам добавить еще 32 лампочки, и т.д. Или иными словами, для того, чтобы нам казалось, что наш светильник плавно набирает яркость, нам надо зажигать вдвое больше лампочек каждый раз, чем было предыдущее значение.

Поэтому децибел действительно удобнее в некоторых случаях, так как сравнивать две величины намного проще в маленьких цифрах, чем в миллионах и миллиардах. А так как электроника – это чисто физическое явление, то и децибелы не обошли ее стороной.

Децибелы и АЧХ усилителя

Как вы помните в прошлом примере с ОУ, у нас неинвертирующий усиливал сигнал в 10 раз. Если посмотреть в нашу табличку, то это получается 20 дБ относительно входного сигнала. Ну да, так оно и есть:


Также в дБ на некоторых графиках АЧХ обозначают наклон характеристики АЧХ. Это может выглядеть примерно вот так:


На графике мы видим АЧХ полосового фильтра. Изменение сигнала +20 дБ на декаду (дБ/дек, dB/dec) говорит нам о том, что при каждом увеличении частоты в 10 раз, амплитуда сигнала возрастает на 20 дБ. То же самое можно сказать и про спад сигнала -20 дБ на декаду. При каждом увеличении частоты в 10 раз, у нас амплитуда сигнала будет уменьшаться на -20 дБ. Есть также похожая характеристика дБ на октаву (дБ/окт, dB/oct). Здесь почти все то же самое, только изменение сигнала происходит при каждом увеличении частоты в 2 раза.

Давайте рассмотрим пример. Имеем фильтр высоких частот (ФВЧ) первого порядка, собранного на RC-цепи.


Его АЧХ будет выглядеть следующим образом (кликните для полного открытия)


Нас сейчас интересует наклонная прямая линия АЧХ. Так как у нее наклон примерно одинаковый до частоты среза в -3дБ, то можно найти ее крутизну, то есть узнать, во сколько раз увеличивается сигнал при каждом увеличении частоты в 10 раз.

Итак возьмем первую точку на частоте в 10 Герц. На частоте в 10 Герц амплитуда сигнала уменьшилась на 44 дБ, это видно в правом нижнем углу (out:-44)


Умножаем частоту на 10 (декада) и получаем вторую точку в 100 Герц. На частоте в 100 Герц наш сигнал уменьшился приблизительно на 24 дБ


То есть получается за одну декаду у нас сигнал увеличился с -44 до -24 дБ на декаду. То есть наклон характеристики составил +20 дБ/декаду. Если +20 дБ/декаду перевести в дБ на октаву, то получится 6 дБ/октаву.

Достаточно часто, дискретные аттенюаторы (делители) выходного сигнала на измерительных приборах (особенно на генераторах) проградуированы в децибелах:
0, -3, -6, -10, -20, -30, -40 дБ. Это позволяет быстро ориентироваться в относительном уровне выходного сигнала.


Что еще измеряют в децибелах?

Также очень часто в дБ выражают (signal-to-noise ratio , сокр. SNR)


где

U c – это эффективное значение напряжения сигнала, В

U ш – эффективное значение напряжения шума, В

Чем выше значение сигнал/шум, тем более чистый звук обеспечивается аудиосистемой. Для музыкальной аппаратуры желательно, чтобы это отношение было не менее 75 дБ, а для Hi-Fi аппаратуры не менее 90 дБ. Не имеет значение физическая природа сигнала, важно, чтобы единицы были в одинаковых измерениях.

В качестве единицы логарифмического отношения двух одноимённых физических величин применяется также непер (Нп) - 1 Нп ~ 0,8686 Б. В основе лежит не десятичный (lg), а натуральный (ln) логарифм отношений. В настоящее время используется редко.

Во многих случаях, удобно сравнивать между собой не произвольные величины, а одну величину относительно другой, названной условно опорной (нулевой, базовой).
В электротехнике, в качестве такой опорной или нулевой величины выбрано значение мощности равное 1 мВт выделяемое на резисторе сопротивлением 600 Ом.
В этом случае, базовыми значениями при сравнении напряжений или токов станут величины 0.775 В или 1.29 мА.

Для звуковой мощности такой базовой величиной является 20 микроПаскаль (0 дБ), а порог +130 дБ считается болевым для человека:


Более подробно об этом написано в Википедии по этой ссылке.

Для случаев когда в качестве базовых значений используются те или иные конкретные величины, придуманы даже специальные обозначения единиц измерений:

dbW (дБВт) – здесь отсчет идет относительно 1 Ватта (Вт). Например, пусть уровень мощности составил +20 дБВт. Это значит что мощность увеличилась в 100 раз, то есть на 100 Вт.

dBm (дБм) – здесь у нас отсчет уже идет относительно 1 милливатта (мВт). Например, уровень мощности в +30дБм будет соответственно равен 1 Вт. Не забываем, что это у нас энергетические децибелы, поэтому для них будет справедлива формула

Следующие характеристики – это уже амплитудные децибелы. Для них будет справедлива формула

dBV (дБВ) – как вы догадались, опорное напряжение 1 Вольт. Например, +20дБВ даст – это 10 Вольт

От дБВ также вытекают другие виды децибелов с разными приставками:

dBmV (дБмВ) – опорный уровень 1 милливольт.

dBuV (дБмкВ) – опорное напряжение 1 микровольт.

Здесь я привел наиболее употребимые специальные виды децибелов в электронике.

Децибелы используются и в других отраслях, где они также показывают отношение каких-либо двух измеряемых величин в логарифмическом масштабе.

Также на YouTube есть интересное видео о децибелах.

При участии Jeer

Уровень шума — это уровень совокупности различных звуков, не вызывающий у человека повышенного беспокойства и значительных изменений показателей функционального состояния систем и анализаторов, которые чувствительны к шуму.

Это уровень шума, который не вызывает у человека беспокойства и любых других физиологических либо психических изменений, как правило не превышающий 55 децибел (дБ). Высокий уровень шума таит в себе очень большую опасность. Чтобы понять какое влияние оказывает шум для слуха, необходимо иметь представление о допустимых нормах шума для разного времени суток, а также знать, какой уровень шума в децибелах производят различные звуки. После этого можно понять, являются ли безопасными для слуха определенные звуки или таят в себе опасность. После понимания важности влияния шума, можно будет стараться избегать вредного воздействия звуков на слух.

Допустимые нормы уровня шума в квартире и других жилых помещениях.

Допустимые нормы уровня шума определяются согласно установленным санитарным нормам, допустимым считают уровень шума не наносящий вреда слуху даже после длительного воздействия на слуховой аппарат. Допустимая величина составляет:

  • в дневное время допустимый уровень шума равен - 55 децибел (дБ);
  • в ночное время допустимый уровень шума равен - 40 децибел (дБ).

Данная величина является оптимальной для нашего уха. Однако в условиях больших городов они, как правило, нарушаются.

Допустимые уровни шума и звука в жилых помещениях

Вид трудовой деятельности, рабочее место

Время суток

Уровни звукового давления, дБ, в октавных полосах со среднегеометрическими частотами, Гц

Уровни звука и эквива-лен-тные уровни звука (в дБА)

Макси-маль-ные уровни звука L Амакс, дБА

Палаты больниц и сана-то-риев, операционные больниц

с 7 до 23 ч.

с 23 до 7 ч.

Кабинеты врачей поликлиник, ам-бу-латорий, диспансеров, больниц, санаториев

Классные помещения, учебные кабинеты, учительские комнаты, аудитории школ и других учебных заведений, конференцзалы, чи-таль-ные залы библиотек

Жилые комнаты квартир, жилые помещения домов отдыха, пансионатов, домов-интернатов для престарелых и инвалидов, спальные помещения в детских дошкольных учреждениях и школах-интернатах

с 7 до 23 ч.

с 23 до 7 ч.

Номера гостиниц и жилые комнаты общежитий

с 7 до 23 ч.

с 23 до 7 ч.

Залы кафе, ресторанов, столовых

Торговые залы магазинов, пасса-жир-ские залы аэропортов и вокзалов, приемные пункты пред-приятий бытового обслуживания

Территории, непосредственно при--легающие к зданиям больниц и санаториев

с 7 до 23 ч.

с 23 до 7 ч.

Территории, непосредственно прилегающие к жилым домам, зданиям поликлиник, зданиям амбулаторий, диспансеров, домов отдыха, пансионатов, домов-интернатов для престарелых и инвалидов, детских дошкольных учреждений, школ и других учебных заведений, библиотек

с 7 до 23 ч.

с 23 до 7 ч.

Территории, непосредственно прилегающие к зданиям гостиниц и общежитий

с 7 до 23 ч.

с 23 до 7 ч.

Площадки отдыха на территории больниц и санаториев

Площадки отдыха на территории микрорайонов и групп жилых домов, домов отдыха, пансионатов, домов-интернатов для престарелых и инвалидов, площадки детских дошкольных учреждений, школ и др. учебных заведений

Уровень шума в децибелах (дБ).

Уровень шума в децибелах - это физическая характеристика громкости звука измеряемая в децибелах (дБ). Если посмотреть какой уровень шума издают привычные для большинства людей вещи и машины, то видно как часто превышен нормальный уровень шума . В качестве примера приведем лишь незначительную часть звуков, которые окружают нас в жизни и какое количество децибел (дБ) они в действительности в себе содержат:

Таблица шумов (уровни звука, децибел)

Децибел,
дБА

Характеристика

Источники звука

Ничего не слышно

Почти не слышно

Почти не слышно

тихий шелест листьев

Едва слышно

шелест листвы

Едва слышно

шепот человека (на расстоянии 1 метр).

шепот человека (1м)

шепот, тиканье настенных часов.
Допустимый максимум по нормам для жилых помещений ночью, с 23 до 7 ч.
(СНиП 23-03-2003 «Защита от шума»).

Довольно слышно

приглушенный разговор

Довольно слышно

обычная речь.
Норма для жилых помещений днём, с 7 до 23 ч.

Неплохо слышно

обычный разговор

Отчётливо слышно

разговор, пишущая машинка

Отчётливо слышно

Верхняя норма для офисных помещений класса А (по европейским нормам)

Норма для контор

громкий разговор (1м)

громкие разговоры (1м)

крик, смех (1м)

Очень шумно

крик, мотоцикл с глушителем, шум пылесоса (с большой мощностью двигателя - 2 киловатта).

Очень шумно

громкий крик, мотоцикл с глушителем

Очень шумно

громкие крики, грузовой железнодорожный вагон (в семи метрах)

Очень шумно

вагон метро (в 7 метрах снаружи или внутри вагона)

Крайне шумно

оркестр, вагон метро (прерывисто), раскаты грома, визг работающей бензопилы

Максимально допустимое звуковое давление для наушников плеера (по европейским нормам)

Крайне шумно

в самолёте (до 80-х годов ХХ столетия)

Крайне шумно

вертолёт

Крайне шумно

пескоструйный аппарат (1м)

Почти невыносимо

отбойный молоток (1м)

Почти невыносимо

Болевой порог

самолёт на старте

Контузия

Контузия

звук взлетающего реактивного самолета

Контузия

старт ракеты

Контузия, травмы

Контузия, травмы

Шок, травмы

ударная волна от сверхзвукового самолёта

При уровнях звука свыше 160 децибел - возможен разрыв барабанных перепонок и лёгких,
больше 200 - смерть (шумовое оружие)

Как видно, большинство шумов значительно превышают допустимую норму. Причем в таблице представлены естественные фоновые шумы, на которые мы, как правило, не можем никак повлиять. А если еще учесть шум от работающего телевизора или громкой музыки, которому мы сами подвергаем свой слуховой аппарат. Нанося собственноручно огромный вред нашему слуху.

Какой уровень шума наносит вред?

Уровень шума который, достигает уровня в 70-90 децибел (дБ), при длительном воздействии на слуховой аппарат оказывает влияние на центральную нервную систему и может привести к ее заболеваниям. Шум, достигший уровня в 100 и более децибел (дБ), воздействуя длительное время может привести к значительному снижению слуха вплоть до полной глухоты. Поэтому слушая музыку на максимальной громкости мы получаем вреда намного больше, чем удовольствия и пользы.

Шум можно разделить на 4 основные группы, имеющие деление на подгруппы.

По механизму возникновения:

  • механический шум (работа машин и механизмов) - создается упругими колебаниями твердой и жидкой поверхности;
  • аэро- и гидродинамический шум, который возникает при появлении турбулентности в газовой или жидкой среде;
  • электродинамический шум слышим при появлении электрической дуги, коронного разряда.

По частоте различают следующие виды шума:

  • низкочастотный менее трехсот герц;
  • среднечастотный от трехсот до восьмисот герц;
  • высокочастотный выше восьмисот герц.

По спектру шумового действия:

  • широкополосный (более одной октавы);
  • тональный (неравномерное распределение энергии звука со значительным перевесом в пределах произвольной октавы).

Глава из книги английского инженера Руперта Тейлора «Шум», R. Taylor «Noise»

В наше время все уже что-то слышали о «децибелах», но почти никто не знает, что это такое. Децибел представляется чем-то вроде акустического эквивалента «свечи» – единицы силы света – и кажется связанным со звоном колокольчиков (bell – в переводе с английского означает колокол, колокольчик). Однако это совсем не так: свое название децибел получил в честь Александера Грейама Белла – изобретателя телефона.

Децибел не только не единица измерения звука, он вообще не является единицей измерения, во всяком случае в том смысле, как, например, вольты, метры, граммы и т. д. Если угодно, в децибелах можно измерить даже длину волос, чего никак нельзя сделать в вольтах. По-видимому, все это звучит несколько странно, так что попытаемся дать разъяснение. Вероятно, никто не удивится, если я скажу, что расстояние от Лондона до Инвернесса в двадцать раз больше, чем от моего дома до Лондона. Я могу выразить любое расстояние, сравнивая его с расстоянием от моего дома до Лондона, скажем до площади Пикадилли Расстояние от Лондона до Джон-о"Тротса в двадцать шесть раз больше, чем это последнее расстояние, а до Австралии – в 500 раз. Но это не означает, что Австралия удалена от чего бы то ни было на 500 единиц. Все приведенные числа выражают только отношения величин.

Одна из измеримых характеристик звука – это количество заключенной в нем энергии; интенсивность звука в любой точке можно измерить как поток энергии, приходящейся на единичную площадку, и выразить, например, в ваттах на квадратный метр (Вт/м 2). При попытке записать в этих единицах интенсивность обычных шумов сразу же возникают трудности, так как интенсивность наиболее тихого звука, доступного восприятию человека с самым острым слухом, равна приблизительно 0,000 000 000 001 Вт/м 2 . Один из наиболее громких звуков, с которым мы сталкиваемся уже не без риска вредных последствий, – это шум реактивного самолета, пролетающего на расстоянии порядка 50 м. Его интенсивность составляет около 10 Вт/м 2 . А на расстоянии 100 м от места запуска ракеты «Сатурн» интенсивность звука заметно превышает 1000 Вт/м 2 . Очевидно, что оперировать числами, выражающими интенсивности звука, лежащие в столь широком диапазоне, очень трудно, независимо от того, представляем ли мы их в единицах энергии или даже в виде отношений. Существует простой, хотя и не вполне очевидный выход из данного затруднения. Интенсивность самого слабого слышимого звука равна 0,000 000 000 001 Вт/м 2 . Математики предпочтут записать это число таким образом: 10 -12 Вт/м2. Если кому-либо такая запись непривычна, напомним, что 10 2 это 10 в квадрате, или 100, а 10 3 это 10 в кубе, или 1000. Аналогично 10 -2 означает 1/10 2 , или 1/100, или 0,01, а 10 -3 это 1/10 3 , или 0,001. Умножить любое число на 10 x – значит х раз умножить его на 10.

Пытаясь найти наиболее удобный способ выражения интенсивностей звука, попробуем представить их в виде отношений, приняв за эталонную интенсивность величину 10 -12 Вт/м2. При этом будем отмечать, сколько раз нужно умножить эталонную интенсивность на 10 для того, чтобы получить заданную интенсивность звука. Например, шум реактивного самолета в 10 000 000 000 000 (или в 10 13) раз превышает наш эталон, то есть этот эталон необходимо 13 раз умножить на 10. Такой способ выражения позволяет значительно уменьшить значения чисел, выражающих гигантский диапазон звуковых интенсивностей; если мы обозначим однократное увеличение в 10 раз как 1 бел, то получим «единицу» для выражения отношений. Так, уровень шума реактивного самолета соответствует 13 белам. Бел оказывается слишком большой величиной; удобнее пользоваться более мелкими единицами, десятыми долями бела, которые и называют децибелами. Таким образом, интенсивность шума реактивного двигателя равна 130 децибелам (130 дБ), но во избежание путаницы с каким-либо другим эталоном интенсивности звука следует указать, что 130 дБ определяется относительно эталонного уровня 10 -12 Вт/м 2 .

Если отношение интенсивности данного звука к эталонной интенсивности выражается каким-нибудь менее круглым числом, например 8300, перевод в децибелы окажется не таким простым. Очевидно, число умножений на 10 будет больше 3 и меньше 4, но для точного определения этого числа необходимы длительные вычисления. Как обойти такое затруднение? Оказывается, весьма просто, поскольку все отношения, выраженные в единицах «десятикратных увеличений», давно вычислены – это логарифмы.

Любое число можно представить как 10 в какой-то степени: 100 это 10 2 и, следовательно, 2 – это логарифм 100 при основании 10; 3 – логарифм 1000 при основании 10 и, что менее очевидно, 3,9191 – логарифм 8300. Нет необходимости все время повторять «при основании 10», потому что 10 – самое распространенное основание логарифма, и если нет другого указания, то подразумевается именно это основание. В формулах эта величина записывается как log10 или lg.

Пользуясь определением децибела, можем теперь записать уровень интенсивности звука в виде:

Например, при интенсивности звука в 0,26 (2,6×10 -1) Вт/м 2 уровень интенсивности в дБ относительно эталона 10 -12 Вт/м 2 равен

Но логарифм 2,6 равен 0,415; следовательно, окончательный ответ выглядит так:

10 × 11,415 = 114 дБ (с точностью до 1 дБ)

Не следует забывать, что децибелы не являются единицами измерения в том смысле слова, как, например, вольты или омы, и что соответственно с ними приходится обращаться иначе. Если две аккумуляторные батареи по 6 В (вольт) соединить последовательно, то разность потенциалов на концах цепи составит 12 В. А что получится, если к шуму в 80 дБ добавить еще шум в 80 дБ? Шум общей интенсивностью в 160 дБ? Никак нет – ведь при удвоении числа его логарифм возрастает на 0,3 (с точностью до двух десятичных знаков). Тогда при удвоении интенсивности звука уровень интенсивности увеличивается на 0,3 бела, то есть на 3 дБ. Это справедливо для любого уровня интенсивности: удвоение интенсивности звука приводит к увеличению уровня интенсивности на 3 дБ. В табл. 1 показано, как увеличивается уровень интенсивности, выраженный в децибелах, при сложении звуков различной интенсивности.

Таблица № 1

Теперь, разрешив тайну децибела, приведем несколько примеров.

Уровень шума в децибелах

В табл. 2 дан перечень типичных шумов и уровни их интенсивности в децибелах.

Таблица № 2

Интенсивность типичных шумов
Примерный уровень звукового давления, дБА Источник звука и расстояние до него
160 Выстрел из ружья калибра 0,303 вблизи уха
150 Взлет лунной ракеты, 100 м
140 Взлет реактивного самолета, 25 м
120 Машинное отделение подводной лодки
100 Очень шумный завод
90 Тяжелый дизельный грузовик,7 м;
Дорожный перфоратор (незаглушенный),7 м
80 Звон будильника, 1 м
75 В железнодорожном вагоне
70 В салоне небольшого автомобиля, движущегося со скоростью 50 км/ч;
Квартирный пылесос, 3 м
65 Машинописное бюро;
Обычный разговор, 1 м
40 Учреждение, где нет специальныхисточников шума
35 Комната в тихой квартире
25 Сельская местность, расположенная вдали от дорог

Каким образом можно определить интенсивность данного звука? Это довольно сложная задача; значительно легче измерить колебания давления в звуковых волнах. В табл. 3 приведены значения звукового давления для звуков различной интенсивности. Из этой таблицы видно, что диапазон звуковых давлений не так широк, как диапазон интенсивностей: давление возрастает вдвое медленнее, чем интенсивность. При удвоении звукового давления энергия звуковой волны должна увеличиться в четыре раза – тогда соответственно увеличится скорость частиц среды. Поэтому, если мы измерим звуковое давление, как и интенсивность, в логарифмическом масштабе и, кроме того, введем множитель 2, получим те же величины для уровня интенсивности. Например, звуковое давление самого слабого из слышимых звуков равно примерно 0,00002 Н (ньютона)/м 2 , а в кабине дизельного грузовика оно составляет 2 Н/м 2 , следовательно, уровень интенсивности шумов в кабине равен

Таблица № 3

Выражая уровень звукового давления в децибелах, следует помнить, что при увеличении давления вдвое прибавляется 6 дБ. Если в кабине дизельного грузовика шум достигнет 106 дБ, то звуковое давление удвоится и составит 4 Н/м 2 , а интенсивность увеличится в четыре раза и достигнет 0,04 Вт/м 2 .

Мы много говорили о мере интенсивности звука, но совершенно не касались практических методов измерения этой величины. К доступным для измерения характеристикам звуковой волны относятся интенсивность, давление, скорость и смещение частиц. Все эти характеристики непосредственно связаны друг с другом, и, если удается измерить хотя бы одну из них, остальные можно вычислить.

Нетрудно увидеть или почувствовать на ощупь колебание легких предметов, оказавшихся на пути звуковой волны. На этом явлении основан принцип действия осциллографа – самого старого вида шумомера. Осциллограф состоит из диафрагмы, к центру которой прикреплена тонкая нить, механической системы для усиления колебаний, и пера, записывающего на бумажной ленте смещения диафрагмы. Такие записи напоминают «волнистые линии», о которых мы говорили в предыдущей главе.

Этот прибор был крайне малочувствителен и годился только для подтверждения акустических теорий ученых того времени. Инерция механических деталей предельно ограничивала частотную характеристику и точность прибора. Замена механического усилителя оптической системой и использование фотографического метода регистрации сигналов позволили значительно снизить инерционность прибора. В усовершенствованном таким образом устройстве нить диафрагмы наматывалась на вращающийся барабан, закрепленный на оси, к которой прикреплялось зеркальце, вращающееся вместе с барабаном. На зеркальце падал луч света; при поворотах зеркальца то в одну, то в другую сторону, происходивших в результате колебаний мембраны, луч отклонялся, и эти отклонения можно было записывать на светочувствительную бумагу. И только с развитием электроники были разработаны более или менее точные измерительные приборы, а для конструирования современного портативного шумомера пришлось дожидаться изобретения транзисторов.

По существу, современный шумомер – это электронный аналог старого механического устройства. Первым шагом в процессе измерения служит преобразование звукового давления в изменения электрического напряжения; это преобразование производит микрофон. В настоящее время в таких приборах применяют микрофоны самых различных типов: конденсаторные, с движущейся катушкой, кристаллические, ленточные, с нагретой проволокой, с сегнетовой солью – это лишь малая часть всех типов микрофонов. В нашей книге мы не будем рассматривать принципы их действия.

Все микрофоны выполняют одну и ту же основную функцию, и большинство из них снабжено мембраной, того или иного вида, которая приводится в колебания изменениями давления в звуковой волне. Смещения мембраны вызывают соответствующие изменения напряжения на зажимах микрофона. Следующий шаг в измерении – усиление, а затем выпрямление переменного тока и заключительная операция – подача сигнала на вольтметр, откалиброванный в децибелах. В большинстве таких приборов вольтметром измеряются не максимальные, а «среднеквадратичные значения» сигнала, то есть результат определенного вида усреднения, которым пользуются чаще, чем максимальными значениями.

Обычным вольтметром нельзя охватить огромный диапазон звуковых давлений и поэтому в той части устройства, где происходит усиление сигнала, имеется несколько цепей, различающихся по усилению на 10 дБ, которые можно включать последовательно одну за другой. Однако до сих пор еще широко применяют усовершенствованную модель старого осциллографа. В электронно-лучевом осциллоскопе проблема инерционности, свойственная механическому осциллографу, полностью исключена, так как масса электронного луча пренебрежимо мала, и он легко отклоняется электромагнитным полем и рисует на экране кривую колебаний напряжения, подаваемого на прибор.

Полученная осциллографическая запись применяется для математического анализа формы звуковой волны. Осциллоскопы также чрезвычайно полезны и при измерении импульсных шумов. Как мы уже говорили, обычный шумомер непрерывно определяет среднеквадратичные значения сигнала. Но, например, звуковой хлопок или орудийный выстрел не порождают непрерывный шум, а создают единичный, очень мощный, иногда опасный для слуха импульс давления, который сопровождается постепенно затухающими колебаниями давления (рис. 13). Начальный скачок давления может повредить слух или разбить оконное стекло, но так как он единичен и кратковременен, то среднеквадратичная величина не будет для него характерна и может только привести к недоразумению. Хотя для измерения импульсных звуков существуют специальные шумомеры, большая часть их не сможет зарегистрировать полностью среднеквадратичную величину импульса просто потому, что они не успевают сработать. Вот здесь осциллоскоп и демонстрирует свои преимущества, мгновенно вычерчивая точную кривую подъема давления, так что максимальное давление в импульсе можно измерить прямо на экране.

Рис. 13. Типичный импульсный шум

Возможно, одним из наиболее существенных вопросов акустики является зависимость поведения звука от его частоты. Нижняя частотная граница восприятия звука человеком составляет около 30 Гц, а верхняя – не выше 18 кГц; поэтому шумомер должен был бы регистрировать звуки в том же диапазоне частот. Но тут возникает серьезное затруднение. Как мы увидим в следующей главе, чувствительность человеческого уха для различных частот далеко не одинакова; так, например, чтобы звуки с частотой 30 Гц и 1 кГц звучали одинаково громко, уровень звукового давления первого из них должен быть на 40 дБ выше, чем второго. И следовательно, показания шумомера сами по себе еще не многого стоят.

Этой проблемой занялись специалисты по электронике, и современные шумомеры снабжены корректирующими контурами, состоящими из отдельных цепочек, подключая которые можно снизить чувствительность шумомера к низкочастотным и очень высокочастотным звукам и тем самым приблизить частотные характеристики прибора к свойствам человеческого уха. Обычно шумомер содержит три корректирующих контура, обозначаемых А, В и С; наиболее полезна коррекция А; коррекцию В применяют лишь изредка; коррекция С мало влияет на чувствительность в диапазоне 31,5 Гц - 8 кГц. В некоторых типах шумомеров используется еще коррекция D, которая позволяет считывать показания прибора прямо в единицах PN дБ, применяемых для измерения шума самолетов. Точный расчет PN дБ весьма сложен, но для высоких уровней шума уровень в единицах PN дБ равен уровню в дБ, измеренному шумомером с коррекцией D, плюс 7 дБ; в большинстве случаев шум реактивных самолетов, выраженный в PN дБ, приблизительно равен уровню в дБ, измеренному шумомером с коррекцией А, плюс 13 дБ.

В настоящее время почти повсеместно уровень шума принимают равным уровню, измеренному в дБ при помощи шумомера с коррекцией А, и выражают его в единицах дБА. Хотя человеческое ухо воспринимает звук несравненно более утонченно, чем шумомер, и поэтому звуковые уровни, выраженные в дБА, ни в коей мере не соответствуют точно физиологической реакции, но простота этой единицы делает ее чрезвычайно удобной для практического применения.

Важнейший недостаток измерения громкости в дБА состоит в том, что при этом наша реакция на звуки низкой частоты недооценивается и совершенно не учитывается повышенная чувствительность уха к громкости чистых тонов.

К числу достоинств шкалы дБА следует, в частности, отнести то обстоятельство, что здесь, как мы увидим в следующей главе, удвоение громкости грубо соответствует увеличению уровня шума на 10 дБА. Однако даже эта шкала дает не более чем грубое указание на роль частотного состава шума, а так как эта характеристика шума часто чрезвычайно важна, то результаты измерений, проведенных с помощью шумомера, приходится дополнять данными, полученными при использовании других приборов.

Частоты, как и интенсивности, измеряют в логарифмическом масштабе, причем за основу принимают ступени удвоения числа колебаний в секунду. Так как, однако, диапазон частот менее широк, чем диапазон интенсивностей, число десятикратных увеличений не подсчитывают, десятичными логарифмами не пользуются и частоты звука всегда выражают числом колебаний, или циклов в секунду. За единицу частоты принимают одно колебание в секунду, или 1 герц (Гц). Определение интенсивности звука для каждой частоты потребовало бы бесконечного числа измерений. Поэтому, как и в музыкальной практике, весь диапазон разделяют на- октавы. Самая большая частота в каждой октаве в два раза превышает самую малую. Первый, наиболее простой этап частотного анализа звука - измерение уровня звукового давления в пределах каждой из 8 или 11 октав, в зависимости от интересующего нас диапазона частот; при измерении сигнал с выхода шумомера поступает на набор октавных фильтров, или на октавный полосовой анализатор. Слово «полоса» указывает на тот или иной участок частотного спектра. Анализатор содержит 8 или 11 электронных фильтров. Эти устройства пропускают только те частотные компоненты сигнала, которые лежат в пределах их полосы. Включая фильтры по одному, можно последовательно измерить уровень звукового давления в каждой полосе непосредственно при помощи шумомера. Но во многих случаях даже октавные анализаторы не дают достаточных сведений о сигнале, и тогда прибегают к более детальному анализу, применяя фильтры в половину или в одну треть октавы. Для получения еще более детального анализа используют узкополосные анализаторы, которые «разрезают» шум на полосы постоянной относительной ширины, например 6 % от средней частоты полосы или на полосы шириной в определенное число герц, например 10 или 6 Гц. Если в шумовом спектре присутствуют чистые тоны, что случается нередко, их частоту и амплитуду можно установить точно с помощью анализатора дискретных частот.

Обычно звукоанализирующая аппаратура очень громоздка, и поэтому ее применение ограничивается рамками лабораторий. Весьма часто звук, подлежащий исследованию, через микрофон и усилительные цепи шумомера записывают на высококачественный портативный магнитофон, применяя для калибровки контрольные сигналы; затем запись проигрывают уже в лаборатории, подавая сигнал на анализатор, который автоматически вычерчивает частотный спектр на бумажной ленте. На рис. 14 изображены спектры типичного шума, полученные с помощью октавного, третьоктавного и узкополосного (полоса 6 Гц) анализаторов.


Рис. 14. Анализ звука с помощью октавного и третьоктавного фильтров и фильтра с шириной полосы 6 Гц.

Однако, чтобы измерить шум, еще недостаточно знать уровень громкости и частоту звука. Если говорить о шуме окружающей среды, то он складывается из множества отдельных шумов различного происхождения: это шумы уличного движения, самолетов, промышленные шумы, а также шумы, возникающие в результате других видов деятельности человека. Если попытаться измерить уровень шума на улице обычным шумомером, то окажется, что это чрезвычайно сложная задача: стрелка шумомера будет непрерывно колебаться в очень широких пределах. Что же следует принять за уровень шума? Максимальный отсчет? Нет, эта цифра слишком высока и непоказательна. Средний уровень? Это было бы возможно, но крайне трудно оценить среднюю величину для какого-то определенного промежутка времени, а чтобы удерживать стрелку в пределах шкалы, придется непрерывно менять ступени усиления шумомера.

Таблица № 4

Существуют два общепринятых метода учета флуктуации уровня шума, позволяющие выражать этот уровень в численной мере. В первом методе используют так называемый анализатор статистического распределения. Это устройство регистрирует относительную долю времени, в течение которого измеряемый уровень шума находится в пределах каждой из ступеней шкалы, расположенных, например, через каждые 5 дБ. Результаты таких измерений показывают, в течение какой доли полного времени был превышен каждый из звуковых уровней. Нанеся на график числа, представленные в табл. 4, соединив точки плавной линией и установив уровни, которые были превышены в течение 1, 10, 50, 90 и 99 % времени, мы сможем дать удовлетворительное описание «шумового климата». Указанные уровни обозначаются так: L1, L10, L50, L90 и L99. L1 дает представление о максимальном значении уровня шума, L10 – это характерный высокий уровень, тогда как L90 как бы показывает шумовой фон, то есть уровень, до которого снижается шум при наступлении временного затишья. Большой интерес представляет разность между значениями L10 и L90; она указывает, в каких пределах в каждом данном месте варьируется уровень шума, а чем больше колебания шума, тем сильнее его раздражающее воздействие. Впрочем, уровень L10 и сам по себе служит хорошим показателем беспокоящего действия транспортного шума; этот показатель широко применяется при измерении и прогнозирования транспортного шума, и с его учетом определяют размеры государственной компенсации жертвам шума новых автострад и дорог (см. гл. 11). Итак, L10 – это уровень звука, выраженный в дБА, который превышается в течение точно десяти процентов от полного времени измерений.

Обычно транспортный шум флуктуирует вполне определенным образом, поэтому уровень L10 служит самостоятельным достаточно удовлетворительным показателем шума, хотя только частично представляет статистическую картину шума. Если же шумы меняются беспорядочно, как, например, это происходит при наложении друг на друга железнодорожных, промышленных и иногда самолетных шумов, распределение шумовых уровней сильно колеблется от точки к точке. В подобных случаях также желательно выразить все статистические данные одним числом. Были сделаны попытки изобрести формулу, включающую всю картину шума, включая и размах шумовых флуктуации. К таким показателям относятся «индекс транспортного шума» и «уровень шумового загрязнения», но самый распространенный показатель – это особого рода средняя величина, обозначаемая Lэкв. Она характеризует среднее значение энергии звука (в отличие от арифметического усреднения уровней, выраженных в дБ); иногда Lэкв называют эквивалентным уровнем непрерывного шума, потому что численно эта величина соответствует уровню такого строго стабильного шума, при котором за весь период измерения микрофон принял бы то же суммарное количество энергии, какое поступает в него при всех неравномерностях, всплесках и выбросах измеряемого флуктуирующего шума. В простейшем случае Lэкв составит, например 90 дБА, если уровень шума все время равнялся 90 дБА, или если половину времени измерения шум составлял 93 дБА, а остальное время полностью отсутствовал. Действительно, так как удвоение интенсивности или энергии шума приводит к увеличению его уровня на 3 дБ, то для того, чтобы при удвоении интенсивности шума сохранить постоянным общее количество энергии, следует вдвое уменьшить время его действия. Аналогично ту же величину Lэкв = 90 дБА мы получим при уровне шума 100 дБА, если он действует в течение одной десятой того же промежутка времени. Измерение расхода электроэнергии при помощи электросчетчика производится подобным же образом. На практике периоды постоянного уровня шума и периоды полного его отсутствия встречаются не часто, и поэтому рассчитать Lэкв достаточно сложно. Здесь на помощь приходят таблицы распределения типа табл. 4, или специально сконструированные автоматические счетчики. Индекс Lэкв обладает двумя недостатками: при усреднении короткие всплески шума с высоким уровнем вносят больший вклад, чем периоды шума низкого уровня; кроме того, увеличение числа максимумов мало влияет на величину Lэкв. Например, если при усреднении за день шума от 100 поездов получается эквивалентный уровень Lэкв = 65 дБА, то при увеличении числа поездов вдвое Lэкв возрастает всего на 3 дБА. Для того чтобы величина Lэкв возросла так же, как при удвоении громкости (то есть как при увеличении уровня на 10 дБА) шума, создаваемого каждым из поездов, их число пришлось бы увеличить в 10 раз. И все же, несмотря на некоторую неполноценность, шкала Lэкв представляет собой наилучшую универсальную меру шума из всех имеющихся в настоящее время. В Англии она постепенно получит такое же распространение, какое имеет на континенте. Сейчас она уже применяется в Англии для измерения дозы шума, получаемой лицами, работающими в промышленности по найму.

Применяется и другая мера, по существу гораздо более сходная с Lэкв, чем может показаться на первый взгляд: это нормировочный индекс шума, к сожалению слишком хорошо знакомый тем, кто живет вблизи крупных аэропортов. Шкалу нормировочных индексов шума используют для характеристики среднемаксимальных уровней шума самолетов, выраженных в PN дБ (так называемый «воспринимаемый уровень звука», см. Акуст. словарь), а так как она начинается от уровня 80 PN дБ (около 67 дБА), то значение 80 вычитается из величины среднемаксимального уровня. Теоретически, если за время измерения шум производит только один самолет, величина этого индекса будет точно равняться среднемаксимальному уровню в PN дБ минус 80. При каждом удвоении числа самолетов следует прибавлять к этому числу 4,5 единицы, а не 3, как для шкалы Lэкв. Хотя формула этого индекса и выглядит несколько ошеломляюще, выше нам удалось фактически полностью его охарактеризовать. Если отдельные пиковые уровни шума самолетов различаются всего на несколько дБ, усредненную величину можно вычислить арифметически. В противном случае значения уровня шума, выраженные в дБ, придется обратно переводить в величины интенсивности, и здесь потребуются таблица логарифмов и светлая голова!

Существует множество других мер, шкал и индексов для измерения шума, включая фоны, соны, нои, различные производные PN дБ и ряд других критериев, не считая всех международных вариантов шкалы нормировочных индексов шума. Заниматься описанием других единиц и показателей нет необходимости. Следует отметить, что в США для измерения шума на рабочем месте принят показатель Lэкв, но при удвоении времени воздействия шума к его значению там прибавляют не 3 дБ, как в Европе, а 5 дБ. В остальном показатели дБА, L10 и Lэкв применяются одинаково во всем мире.

Квартира наша крепость, наша гавань тишины и уюта. Но очень часто посторонний шум мешает нам спокойно расслабиться и отдохнуть после тяжелого рабочего дня. Особенно часто от подобных проблем страдают жители больших городов, которых даже новые звукоизоляционные пластиковые окна не спасают от проникновения уличного шума в помещение. Проблему усугубляет летняя жара, когда в жилом доме или квартире окно закрыть не возможно, ведь кондиционеры не у всех стоят. И если в дневное время шум еще можно как то терпеть, то в ночное время бороться с ним просто невозможно. А ведь есть еще соседи, которые на ночь глядя начинают, сверлить, стучать, выяснять отношения, веселиться с гостями и громко слушать музыку. А с другой стороны дома идет круглосуточная стройка, по сравнению с которой шум от соседей кажется минуткой тишины.

Какой закон защищает граждан от повышенного шума в жилых помещениях? Какие санитарные нормы должны соблюдаться? Какой уровень в дБ допустим в квартире? Кому жаловаться на шумное кафе или строительство рядом с вашим домом? Какой уровень шума не будет нарушать установленные нормы и вредить вашему здоровью? Да-да, вы не ослышались. Постоянное нахождение в шумном помещение достаточно вредно для человеческого уха и всего организма в целом. Можно ли замерить уровень шума в домашних условиях и в какой компетентный орган обращаться при условии превышения санитарной нормы дБ для жилых помещений? Как можно повлиять на соседей, чтобы они прекратили шуметь? Все эти насущные вопросы задают себе каждый день около семидесяти процентов горожан. Интернет мало поможет вам с поисками ответов. Лучше сразу обратиться к опытным специалистам, имеющим опыт решения подобных проблем.

Консультанты нашего сайта в любое время готовы вам помочь грамотно, быстро и, что немало важно, бесплатно.

Для того чтобы дать ответы на поставленные выше вопросы необходимо для начала разобраться с основными понятиями темы. Что такое шум, скорее всего, понятно каждому человеку, поэтому сейчас научного обоснования мы ему давать не будем. А вот под громкостью звука понимается уровень его (в смысле звука) давления в единицах измерения, которыми являются дБ (децибелы). Под максимальным уровнем шума в квартире понимается увеличение нормы на 15 дБ. То есть, если закон устанавливает санитарную норму в 40 дБ в дневное время, то допустимый уровень будет равняться 55 дБ. В ночное время максимальная норма в жилых квартирах равняется 40 децибелам и превышать ее нельзя. Почему закон устанавливает разные показатели для помещений на ночное и дневное время? Потому что в ночное время основным органом восприятия становятся ушные раковины, есть даже такое понятие, как чуткий сон. Уровень восприимчивости шума повышается примерно на 10-15 дБ. А значит, резкие, громкие звуки мешают спать.

Постоянное нарушение шумовых границ в децибелах может привести к нарушению нормального функционирования вашего организма. Регулярный шум в квартире, например от действий соседей, в размере 70 дБ уже отрицательно скажется на вашем здоровье (нервная система не отдыхает, появляется раздражительность, головные боли и т.д.). В некоторых случаях даже не хочется долго находиться в жилых помещениях из-за повышенного шумового фона. Не нужно пытаться ругаться с ответственными за грохот и крики людьми. И на соседей, и на строителей, и даже на руководство соседней кафешки, нарушающих закон о допустимом шуме в дневное и ночное время, всегда можно найти управу. Для начала обратитесь к специалистам и вам подскажут алгоритм действий по закону и справедливости.

Уровни шума на примерах

Измерить дБ в жилых помещениях недостаточно. Необходимо еще понимать, насколько превышение допустимого звука может повлиять на ваше здоровье и какая степень нарушения закона при этом наблюдается (при стандартной норме в 40 звуковых единиц).

Сравнительный перечень звуковых вибраций (единицей измерения здесь будет естественно дБ):

  • от 0 до 10 почти ничего неслышно, можно сравнить с очень тихим шелестом листвы;
  • от 25 до 20 едва слышный звук, можно сравнить с человеческим шепотом в жилых квартирах на расстоянии одного метра;
  • от 25 до 30 тихий звук (тиканье часов, например);
  • от 35 до 45 шумовой эффект от спокойного (возможно даже приглушенного) разговора, для жилых строений стандартом по закону является 40 дБ;
  • от 50 до 55 отчетливая звуковая волна, допустимо для не жилых помещений, например, для офисов или рабочих кабинетов с использованием технических средств (пишущие машинки, факс, принтер и т.д.);
  • от 60 до 75 шумное помещение, можно сравнить с громкими разговорами, смехом, криками и т.д. Хотелось бы напомнить, что 70 дБ уже опасно для вашего здорового состояния;
  • от 80 до 95 очень шумные звуки, в жилых помещениях так может работать мощный пылесос, в не жилых (в том числе и на улице) такие звуки издает метро, рев мотоцикла, очень громкие крики и т.п.;
  • от 100 до 115 максимальный звук для наушников, раскат грома, вертолет, бензопила и т.д.;
  • 130 – уровень звукового давления попадающий под болевой порог (к примеру, звук двигателей самолета, когда он стартует);
  • от 135 до 145 такое давление звука может привести к контузии;
  • от 150 до 160 такое давление звука может привести не только к контузии, но и к травматизму, а также к введению человека в шоковое состояние;
  • свыше 160 возможен разрыв не только барабанных перепонок, но и легких человека.

Помимо слышимых звуков влияние на здоровье оказывают и неслышимые ухом (ультразвук, инфразвук). За подробностями можно обратиться к нашим консультантам.

Законодательство против шума

В нашей стране нет конкретного закона, охраняющего покой граждан в дневное и ночное время. Например, стандарты максимальных звуковых давлений (40 и 50 дБ) установлены не гражданским или уголовным процессом, а санитарными нормами. Определение шума в 70 дБ, как вредного для здоровья вы тоже не найдете в современном законодательстве. Да и сами люди не уважают потребности на отдых друг друга. Не зависимо от возраста (сосед может громко включать музыку в ночное время хоть ему 18 лет, хоть 40, хоть 70) и социального положения. Строительные работы ведутся также и днем и ночью, в обход закона по полученному разрешению от депутатских органов. Бороться с соседями проще. В ночное время можно вызвать полицию и привлечь их к ответственности за нарушение общественного порядка. В дневное время, если вам кто-то мешает, и вы уверены в своей правоте, можно вызвать сотрудников СЭС или роспотребнадзора, которые обязаны измерить уровень шума и зафиксировать вашу жалобу.

Есть положения о том, какое помещение признается жилым и в нем прописываются допустимые условия для проживания. Там вы сможете найти информацию и о нарушении норм звукового давления в дневное время в том числе.

Чтобы не попасть впросак, вызывая полицию необходимо понимать что подразумевает собой дневное и ночное время. Итак, нормы СанПиНа говорят нам о том, что дневное это время с 7.00 утра до 23.00 вечера, соответственно ночь длиться с 23.00 до 7.00. в соответствии с ФЗ о поддержании нормальных условий проживания за нарушения этих самых норм грозит административная ответственность.

Также закон запрещает проведение строительных работ, нарушающих нормы допустимости шума ночью. Если стройка в спальном районе все же ведется можно обратиться в муниципальные органы или в роспотребнадзор. Каждая ситуация индивидуальна и поэтому прежде чем что-то делать обратитесь к специалистам за советом.

Сохранение слуха

Для того чтобы не навредить своему слуху необходимо соблюдать определенные правила:

  • не нужно заглушать посторонний шум извне громкой музыкой в наушниках, можете сделать только хуже;
  • при необходимости частого и длительного нахождения в шумных местах (или на производстве) пользуйтесь специальными затычками для ушей (они называются беруши);
  • снижение шума в помещении возможно при использовании специальных материалов для звукоизоляции;
  • соблюдайте правила безопасности при занятиях дайвингом, прыжках с парашютом, полетах на самолете, занятиях в тире и т.д.;
  • берегите уши, если заболели насморком или подхватили ринит (запрещены все действия, перечисленные строчкой выше);
  • даже при большой любви к громкой музыке, не нужно ее слушать сутками напролет;
  • давайте своему слуху периодическую передышку, если все же шумных мест избежать не удается.

Заботьтесь о своем здоровье, ведь кроме вас и ваших близких никто этого не сделает. А при возникновении сложных ситуаций, если вам потребуется юридическая помощь, обращайтесь к нашим юристам. Это можно сделать на сайте, не выходя из дома и без каких-либо финансовых затрат.