Типы спектрофотометров. Что такое спектрофотометр. Основные понятия и определения

Типы спектрофотометров. Что такое спектрофотометр. Основные понятия и определения
Типы спектрофотометров. Что такое спектрофотометр. Основные понятия и определения

Спектрофотометры предназначены для измерения коэффициента пропускания, оптической плотности и концентрации веществ в жидких пробах и могут быть применены в лабораториях различного профиля.

Выбор приборов для проведения спектрофотометрических методик довольно-таки широк. Приборы отличаются, прежде всего спектральным диапазоном (видимая область спектра или область, включающая УФ), спектральной шириной щели, погрешностью и воспроизводимостью установки длины волны, наличием сканирования спектров, комплектацией, типом установки длины волны (ручная или автоматическая — программная) и т.д.

Производители спектрофотометров и основные модели

Среди приборов, продающихся на российском рынке, можно выделить следующие модели и производителей:

(модели В-1100, УФ-1100, УФ-1200, УФ-3000, УФ-3100, УФ-3200, УФ-6100). Производятся в Китае по заказу и под контролем российской компании «Промышленные экологические лаборатории».

— Спектрофотометры серии ПЭ (ПЭ-5300ВИ, ПЭ-5400ВИ, ПЭ-5400УФ). Приборы производятся российской компанией «ЭКРОСХИМ».

— Спектрофотометр КФК-3-01 (Концентрационный фотоэлектрический фотометр). Данный прибор производится Загорским оптико-механическим заводом (ЗОМЗ) и является усовершенствованной моделью КФК-3, который применялся практически в любой лаборатории СССР.

— Спектрофотометр КФК-3КМ производства «ЮНИКО-СИС», Россия.

— Спектрофотометры СФ-56 и СФ-2000 для работы в диапазоне 190–1100 нм. Приборы производятся российской компанией «ОКБ Спектр»

— Спектрофотометры UNICO (модели 1201, 1205, 2100, 2800, 2802, 2802S, 2804, 2100UV). Производитель United Products & Instruments, Inc.», США, дистрибьютор в России — компания «ЮНИКО-СИС»

— Спектрофотометры LEKI (модели SS1104, SS1207, SS1207 UV, SS2107, SS2107UV, SS2109UV, SS2110UV). Приборы производятся MEDIORA, Финляндия, дистрибьютором в России является компания «Лабораторное оборудование и приборы».

Все указанные приборы внесены в реестр средств измерения и могут быть использованы в аккредитованной лаборатории.

Технические характеристики и особенности моделей

Ниже будут рассмотрены основные технические характеристики, особенности и цена наиболее популярных моделей спектрофотометров.

Спектрофотометры B-1100 и УФ-1100 серии Эковью

Выпускаются с 2016 года и пришли на смену снятым с производства спектрофотометрам серии ПЭ Промэколаб. Приборы серии ПЭ Промэколаб работают во многих лабораториях и хорошо себя зарекомендовали. Пришедшие на смену модели Эковью обладают улучшенными техническими характеристиками и усовершенствованным программным обеспечением.

Особенности:

  • Наличие цветного дисплея
  • Спектральный диапазон (модель B-1100), нм: от 315 до 1050;
  • Спектральный диапазон (модель УФ-1100), нм: от 200 до 1050;

Ориентировочная цена спектрофотометра B-1100 – 75000,00 руб. , УФ-1100 – 148000,00 руб.

и УФ-1200 серии Эковью

Приборы отличаются от моделей В-1100 и УФ-1100 улучшенными характеристиками, дополнительными функциями программного обеспечения. наличием большого цветного сенсорного экрана, что является уникальным для приборов данного класса. Также приборы снабжены специальными шаговыми двигателями, снижающими шумность работы. Как и в моделях предыдущей серии приборы оснащены системой самокалибровки и не требуется использования специальных контрольных светофильтров.

Особенности:

  • Наличие цветного сенсорного дисплея и интуитивно-понятного интерфейса;
  • Передача данных на внешнее устройство хранения
  • Перенос градуировочных кривых между однотипными проборами
  • Возможность сохранения результатов измерений в памяти прибора
  • Наличие системы подсказок оператору, которая облегчает работу на приборе
  • Автоматическая (программная) установка длины волны
  • Большое кюветное отделение, позволяющее использовать кюветы с длиной оптического пути до 100 мм.
  • Система автоматической юстировки длины волны (нет необходимости в контроле точности пробора с помощью светофильтров)
  • Наличие USB-разъема

Основные технические характеристики:

  • Спектральный диапазон (), нм: от 315 до 1050;
  • Спектральный диапазон (модель УФ-1200), нм: от 190 до 1050;
  • Диапазон измерений спектральных коэффициентов направленного пропускания, %: от 0, 1 до 99;
  • Диапазон показаний спектральных коэффициентов направленного пропускания, %: от 0 до 200;
  • Диапазон показаний оптической плотности, Б: от -0,3 до 3,0;
  • Погрешность установки длин волн, нм, не более: ±1,0
  • Спектральная ширина щели, нм: 4,0

Ориентировочная цена спектрофотометра B-1200 – 115000,00 руб., УФ-1200 – 198000,00 руб.

Спектрофотометры серии ПЭ

Компания «Экросхим» (бывшая «Экохим») выпускает спектрофотометры ПЭ-5300ВИ, ПЭ-5400ВИ и ПЭ-5400УФ. Приборы предназначены для проведения спектрофотометрических методик в видимой и УФ области спектра. Приборы имеют регистрационное удостоверение на медицинское изделие (РУ) и могут быть использованы в медучреждениях.

Спектрофотометр ПЭ-5300ВИ

Прибор имеет ручную установку длины волны с точностью 2 нм, предназначен для измерения в видимой области спектра, в базовой комплектации снабжен трехпозиционным кюветодержателем на стандартные кюветы КФК (ширина 24 мм), при использовании дополнительных переходников (входят в комплект поставки) возможна работа с кюветами европейского типа (ширина 10 мм). Большое кюветное отделение позволяет работать с кюветами с длиной оптического пути до 100 мм. Возможна комплектация кюветодержателем на 4 кюветы шириной 10 мм (европейский стандарт) длиной оптического пути от 5 до 50 мм. Наличие USB разъема для подключения ПК.

Основные технические характеристики:

  • Спектральный диапазон: 325-1000 нм.
  • Погрешность установки длины волны, не более: ±2 нм.
  • Воспроизводимость установки длины волны, не более: 1 нм.
  • Пределы допускаемой абсолютной погрешности при измерении спектральных коэффициентов направленного пропускания, не более: ±0,5 %Т.
  • Диапазон измерений оптической плотности: от 3,000 до 0,000;

Ориентировочная цена спектрофотометра ПЭ-5300ВИ — 75000,00 руб.

Спектрофотометр ПЭ-5400ВИ и ПЭ-5400УФ

Приборы имеет автоматическую (программную) установку длины волны с точностью 1 нм, предназначены для измерения в видимой и УФ области спектра, в базовой комплектации снабжены четырехпозиционным кюветодержателем на стандартные кюветы КФК (ширина 24 мм), при использовании дополнительных переходников (входят в комплект поставки) возможна работа с кюветами европейского типа (ширина 10 мм). Большое кюветное отделение позволяет работать с кюветами с длиной оптического пути до 100 мм. Возможна комплектация кюветодержателем на 6 кювет толщиной 10 мм с длиной оптического пути от 5 до 50 мм.

В приборах серии ПЭ-5400 предусмотрена возможность сканирования спектра с использованием специального программного обеспечения SC5400 поставляемого отдельно. Наличие USB разъема для подключения ПК.

Основные технические характеристики:

  • Спектральный диапазон (для модели ПЭ-5400ВИ): 315-1000 нм.
  • Спектральный диапазон (для модели ПЭ-5400УФ): 190-1000 нм.
  • Спектральная ширина щели: 4 нм.
  • Погрешность установки длины волны: не более ±1 нм.
  • Воспроизводимость установки длины волны: ± 0,5 нм.
  • Пределы допускаемой абсолютной погрешности при измерении спектральных коэффициентов направленного пропускания, не более: ±0,5 %Т (315-1000 нм) и ±1,0 %Т (190-315 нм).
  • Диапазон измерения оптической плотности: от 3,000 до 0,000;
  • Диапазон измерения коэффициента направленного пропускания: от 0,0 до 100,0%.

Ориентировочная цена спектрофотометра ПЭ-5400ВИ — 109000,00 руб., ПЭ-5400УФ — 167000,00 руб.

Спектрофотометр КФК-3-01-«ЗОМЗ» (фотометр фотоэлектрический)

Прибор выпускается одним из старейших предприятий оптической отрасли «Загорским оптико-механическим заводом». Завод был основан в 1935 году и выпускал известные всем химикам спектрофотокалориметры КФК-2 и КФК-3.

КФК-3-01 представляет собой малогабаритный универсальный спектрофотометр, предназначенный для анализа жидких растворов с использованием спектрофотометрических методик в видимой области спектра.

Прибор выпускается в трех вариантах исполнения: КФК-3-01-«ЗОМЗ» — базовая модель; КФК-3-02-«ЗОМЗ» — прибор с термостатируемым кюветным отделением; КФК-3-03-«ЗОМЗ» — фотометр с проточной кюветой с насосом и внешним термостатом для подготовки проб.

Прибор снабжен кюветодержателем для установки кювет с длиной оптического пути 1-100 мм. Фотометры КФК-3-«ЗОМЗ» имеют регистрационное удостоверение на медицинское изделие (РУ) и могут быть использованы в медицинской практике.

Основные технические характеристики:

  • Спектральный диапазон: 315-990 нм;
  • Погрешность установки длины волны ±3 нм
  • Выделяемый спектральный интервал, нм, не более: 5 нм;
  • Диапазон измерения коэффициента пропускания, %: 1-100
  • Диапазон измерения оптической плотности, Б: 0-3
  • Диапазон измерений концентрации, ед. конц. 0,001-9999
  • Погрешность измерения коэффициента пропуская ±0,5%

Ориентировочная цена спектрофотометра КФК-3-01-«ЗОМЗ» — 73000,00 руб.

Спектрофотометр КФК-3КМ

Спектрофотометр работает в видимой области спектра (325-1000 нам), измеряет оптическую плотность, коэффициент пропускания и концентрацию растворов и предназначен для реализации широкого круга спектрофотометрических методик. Прибор выпускается в России из импортных комплектующих, имеет яркий и необычный дизайн.

По возможностям и основным характеристикам полностью заменяет ФЭК, КФК-2, КФК-3, КФК-5.

Особенности:

  • Простота использования, интуитивно-понятный интерфейс;
  • Подключается к компьютеру через порт RS-232C (COM-порт) и работа со специализированным ПО.
  • Наличие регистрационного удостоверения на медицинскую технику (РУ) , прибор может использоваться в медицинских учреждениях;
  • Удобная 10-и значная клавиатура;
  • Функция программирования для создания и сохранения градуировочных графиков;
  • Работа с кювета от 5 до 100 мм стандартной толщины (24 мм, стандартные кюветы для КФК);
  • Наличие переходников под кюветы европейского стандарта шириной 10 мм;
  • Энергонезависимая память для сохранения измерений.

Основные технические характеристики:

  • Спектральный диапазон: 325-1000 нм
  • Ширина спектральной щели: 5 нм
  • Погрешность установки длины волны, не более 2 нм
  • Повторяемость установки длины волны — 1нм
  • Диапазон измерений коэффициента пропускания (Т): 0-125%
  • Диапазон измерения оптической плотности (А): -0,1-2,5
  • Погрешность определения коэффициента пропускания, не более 1.0%Т

Ориентировочная цена спектрофотометра КФК-3-КМ — 80000,00-85000,00 руб. Цена прибора зависит от курса доллара.

Фотометрические исследования проводят с помощью фотоколориметров и спектрофотометров. Измерение оптической плотности стандартного и исследуемого окрашенных растворов всегда производят по отношению к раствору сравнения (нулевому раствору). В качестве раствора сравнения можно использовать часть исследуемого раствора, содержащего все добавляемые компоненты, кроме реагента, образующего с определенным веществом окрашенное соединение. Если раствор сравнения при этом остается бесцветным и, следовательно, не поглощает лучей в видимой области спектра, то в качестве раствора сравнения можно использовать дистиллированную воду.

Устройство и принцип действия фотометрических приборов рассмотрим на примере фотоэлектрических концентрационных колориметров КФК-2, КФК-3 и спектрофотометра СФ-46.

Однолучевой фотометр КФК-2 предназначен для измерения пропускания, оптической плотности и концентрации окрашенных растворов, рассеивающих взвесей, эмульсий и коллоидных растворов в области спектра 315-980 нм. Пределы измерения пропускания - 5-100 % (D = 0-1,3). Основная абсолютная погрешность измерения пропускания - 1 %.

Принципиальная оптическая схема фотоколориметра КФК-2 представлена на рис. 2.16.

Свет от галогенной малогабаритной лампы проходит последовательно через систему линз, теплозащитный 2, нейтральный 3, выбранный цветной 4 светофильтры, кювету 5 с раствором, попадает на пластину 6, которая делит световой поток на два: 10 % света направляется на фотодиод (при измерениях в области спектра 590-980 нм) и 90 % - на фотоэлемент (при измерениях в области спектра 315-540 нм).

Характеристики светофильтров представлены в табл. 2.2.

Рис. 2.16.

  • 1 - источник света; 2 - теплозащитный светофильтр;
  • 3 - нейтральный светофильтр; 4 - цветной светофильтр;
  • 5 - кювета с исследуемым раствором или раствором сравнения;
  • 6 - пластина, которая делит световой поток на два потока;
  • 7 - фотодиод; 8 - фотоэлемент

Таблица 2.2

Спектральные характеристики светофильтров к фотоколориметру КФК-2

Маркировка на диске

Маркировка

светофильтра

Длина волны, соответствующая максимуму пропускания, нм

(рис. 2.17) предназначен для выполнения химических анализов растворов. Его принципиальная оптическая схема представлена на рис. 2.18.

Нить лампы 1 изображается конденсором 2 в плоскости диафрагмы Д, заполняя светом щель диафрагмы. Далее диафрагма Д изображается вогнутой дифракционной решеткой 4 и вогнутым зеркалом 5 в плоскости такой же щелевой диафрагмы Д.,. Дифракционная решетка 6 и зеркало создают

Рис. 2.17.


Рис. 2.18.

  • 1 - нить лампы; 2 - конденсор; 3 - световой фильтр;
  • 4 - вогнутая дифракционная решетка; 5 - вогнутое зеркало;
  • 6 - дифракционная решетка; 7,8 - объектив; 9 - кюветы;
  • 10 - линза; 11 - приемник

в плоскости диафрагмы Д 2 растянутую картину спектра. Поворачивая дифракционную решетку вокруг оси, параллельной штрихам решетки, щелью диафрагмы Д., выделяют излучение любой длины волны от 315 до 990 нм. Объектив 7, 8 создает в кюветном отделении слабо светящийся пучок света и формирует увеличенное изображение щели Д 2 перед линзой 10. Линза 10 сводит пучок света на приемнике 11 в виде равномерно освещенного светового кружка. Для уменьшения влияния рассеянного света в ультрафиолетовой области спектра за диафрагмой Д 1 установлен световой фильтр 3, который работает в схеме при измерениях в спектральной области 315-400 нм, а затем автоматически выводится. В кю- ветное отделение (между объективом 7,8 и линзой 10) устанавливаются прямоугольные кюветы 9.

Фотоэлектроколориметр КФК-3 имеет следующие технические характеристики:

  • - спектральный диапазон - 315-990 нм;
  • - спектральный интервал, выделяемый монохроматором фотометра - не более 7 нм;
  • - предел измерения коэффициента пропускания - 0,1-100%;
  • - предел измерения оптической плотности - 0-3;
  • - предел допускаемой основной абсолютной погрешности установки длины волны - 3 нм;
  • - напряжение сети переменного тока - 220 ± 22 В;
  • - частота сети переменного тока - 50-60 Гц;
  • - потребляемая мощность - не более 60 В х А;
  • - габаритные размеры - 500 мм х 360 мм х 165 мм;
  • - масса - 15 кг.

Спектрофотометр СФ-46 предназначен для измерения спектральных коэффициентов пропускания жидких и твердых веществ в области спектра 190-1100 нм. Диапазон измерения спектральных коэффициентов пропускания - от 1 до 100 %. Абсолютная погрешность измерения не превышает 1 %, а стандартное отклонение пропускания - не более 0,1 %.

Спектрофотометр СФ-46 - стационарный прибор, рассчитанный на эксплуатацию в лабораторных помещениях без повышенной опасности поражения электрическим током.

В основу работы спектрофотометра СФ-46 (рис. 2.19) положен принцип измерения отношения двух световых потоков: потока, прошедшего через исследуемый образец, и потока, падающего на исследуемый образец (или прошедшего через контрольный образец).


Рис. 2.19.

Световой пучок от осветителя попадает в монохроматор через входящую щель и разлагается дифракционной решеткой в спектр. В монохроматический поток излучения, поступающий из выходной щели в кюветное отделение, поочередно вводятся контрольный и исследуемый образцы. Излучение, прошедшее через образец, попадает на катод фотоэлемента в приемно-усилительном блоке. Электрические сигналы на резисторе, включенном в анодную цепь фотоэлемента, пропорциональны потокам излучения, падающим на фотокатод.

Усилитель постоянного тока с коэффициентом усиления, близким к единице, обеспечивает передачу сигналов на вход микропроцессорной системы (МПС), которая по команде оператора поочередно измеряет и запоминает напряжения U т, U Q и U, пропорциональные темновому току фотоэлемента, потоку, прошедшему через контрольный образец, и потоку, прошедшему через исследуемый образец. После измерения МПС рассчитывает коэффициент пропускания исследуемого образца по формуле

В режиме определения оптической плотности образца МПС начислит оптическую плотность по формуле D = -lgТ.

Значение измеренной величины высвечивается на цифровом фотометрическом табло.

На рисунке 2.20 представлена оптическая схема спектрофотометра СФ-46.


Рис. 2.20. Оптическая схема спектрофотометра СФ-46:

  • 1,1"- источники излучения; 2 - зеркальный конденсатор;
  • 3, 10 - поворотные зеркала; 4, 8, 9 - линзы; 5 - входная щель;
  • 6 - дифракционная решетка; 7 - выходная щель;
  • 11, 12 - фотоэлементы

Изучение от источника 1 или 1" падает на зеркальный конденсатор 2, который направляет его на плоское поворотное зеркало 3 и дает изображение источника излучения в плоскости линзы 4 , расположенной вблизи входной щели 5 монохроматора. Прошедшее через входную щель излучение падает на вогнутую дифракционную решетку 6 с переменным шагом и криволинейным штрихом. Решетка изготовляется на сферической поверхности, поэтому помимо диспергирующих свойств она обладает свойством фокусировать спектр. Применение переменного шага и криволинейного штриха значительно уменьшает аберрационное искажение вогнутой дифракционной решетки и позволяет получить высокое качество спектра во всем рабочем спектральном диапазоне.

Дифракционный пучок фокусируется в плоскости выходной щели 7 монохроматора, расположенной над входной щелью 5. Сканирование осуществляется поворотом дифракционной решетки, при этом монохроматическое излучение различных длин волн проходит через выходную щель 7 и линзу 8, контрольный или измеряемый образец, линзу 9 и с помощью поворотного зеркала 10 попадает на светочувствительный слой одного из фотоэлементов 11 или 12.

Для обеспечения работы спектрофотометра в широком диапазоне спектра используются два фотоэлемента и два источника излучения сплошного спектра.

Сурьмяно-цезиевый фотоэлемент с окном из кварцевого стекла применяется для измерения в области спектра от 186 до 700 нм, кислородно-цезиевый фотоэлемент - для измерения в области спектра от 600 до 1100 нм. Длина волны, при которой следует переходить от измерений с одним фотоэлементом к измерениям с другим фотоэлементом, указывается в паспорте.

Спектрофотометр СФ-46 предназначен для выполнения спектрофотометрических измерений в области 190 – 1100 нм. С его помощью можно измерить спектральные зависимости коэффициентов пропускания, оптической плотности твердых и жидких образцов, скорость изменения оптической плотности, определить концентрацию раствора в случае линейной зависимости оптической плотности от концентрации.

Блок-схема спектрофотометра представлена на рис. 1.

Рис. 1 Блок-схема спектрофотометра СФ-46

1 – осветитель; 2 – монохроматор; 3 – кюветное

отделение; 4 блок приемно-усилительный;

5 – микропроцессорная система

1 Оптическая схема

Излучение от источника 1 (рис. 2) или 1’ падает на зеркальный конденсор 2, который направляет его на плоское поворотное зеркало 3 и дает изображение источника излучения в плоскости линзы 4, расположенной вблизи входной щели 5 монохроматора.

Монохроматор построен по вертикальной автоколлимационной схеме.

Прошедшее через входную щель излучение падает на вогнутую дифракционную решетку 6 с переменным шагом и криволинейным штрихом. Дифракционная решетка, помимо диспергирующих свойств, обладает свойством фокусировать спектр. Применение переменного шага и криволинейного штриха значительно уменьшает аберрационные искажения вогнутой дифракционной решетки и позволяет получить высокое качество спектра во всем рабочем диапазоне.

Дифрагированный пучок фокусируется в плоскости выходной щели 7 монохроматора, расположенной над входной щелью 5. Сканирование осуществляется поворотом дифракционной решетки, при этом монохроматическое излучение различных длин волн проходит через выходную щель 7, линзу 8, контрольный или измеряемый образец, линзу 9 и с помощью поворотного зеркала 10 падает на светочувствительный слой фотоэлемента 11 или 12.

Для уменьшения рассеянного света и срезания высших порядков дифракции в спектрофотометре используются два светофильтра: из стекла ПС11 для работы в области спектра 230 – 450 нм и из стекла ОС14 для работы в области спектра 600 – 1100 нм. Смена светофильтров производится автоматически.

Линзы изготовлены из кварцевого стекла с высоким коэффициентом пропускания в ультрафиолетовой области спектра

Рис. 2 Оптическая схема спектрофотометра СФ-46

Для обеспечения работы спектрофотометра в широком спектральном диапазоне используются два фотоэлемента и два источника излучения сплошного спектра. Сурьмяно-цезиевый фотоэлемент с окном из кварцевого стекла применяется для измерений в области спектра от 190 до 700 нм, кислородно-цезиевый фотоэлемент – для измерений в области спектра от 600 до 1100 нм. Длина волны, при которой следует переходить от измерений с одним фотоэлементом к измерениям с другим фотоэлементом, указана в паспорте спектрофотометра.

Дейтериевая лампа предназначена для работы в области спектра от 190 до 350 нм, лампа накаливания – для работы в области спектра от 340 до 1100 нм. Для проверки градуировки используется ртутно-гелиевая лампа ДРГС-12.

В режиме калибровки оператор с пульта вводит нормированные значения, приписанные данному калибровочному раствору, последовательно подает в кюветное отделение калибровочные растворы и проводит измерения.

В режиме анализа оператор устанавливает в кюветное отделение кювету с исследуемым раствором и проводит измерение.

Рис. 3.31. Обобщенная структурная схема одноканального колориметра. 1 - источник световой энергии; 2 - диафрагма; 3 - оптическая система; 4 - полосовой фильтр; 5 - оптическая система; 6 - кювета; 7 - фотоприемник; 8 - аналого-цифровой преобразователь; 9 - микро-ЭВМ; 10 - индикатор; 11 - пульт оператора;

12 - интерфейс связи с внешней ЭВМ и регистрирующим устройством

Рис. 3.32. Упрощенная оптическая схема однолучевого спектрофотометра. 1 - монохроматор (источник монохроматического излучения световой энергии на длине волны \\, 2 - кювета с исследуемым раствором; 3 - детектор (фотоприемник); Ф„ - падающий поток световой энергии; Ф - поток световой энергии, прошедший через раствор, поглощающий часть энергии

Рис. 3.33. Обобщенная структурная схема одноканального спектрофотометра.

1 - источник световой энергии (видимая область);

2 - поворотный отражатель; 3 - источник световой энергии (ультрафиолетовая область); 4 - оптическая система, направляющая поток энергии на входную щель; 5 - входная щель; 6 - оптическая система, формирующая параллельный поток световой анергии;

7 - диспергирующий элемент (призма или дифракционная решетка); 8 - оптическая система, направляющая поток энергии на выходную щель; 9 - выходная щель; 10 - оптическая система, формирующая поток энергии, проходящий через кювету; 11 - кювета; 12 - фотоприемник; 13 - аналого-цифровой преобразователь; 14 - микро-ЭВМ; 15 - индикатор;

16 - пульт оператора; 17 - интерфейс связи с внешней ЭВМ и регистрирующим устройством

Если у прибора отсутствует режим автоматической калибровки, то оператор строит граду-ировочный график зависимости оптической плотности и нормированных значений, приписанных калибровочным растворам.

Спектрофотометры

Основное отличие спектрофотометра от фотоколориметра состоит в возможности пропустить через исследуемый образец световой поток любой требуемой длины волны, проводить фотометрические измерения, сканируя (просматривая) весь диапазон длин волн не только видимого (V1S) света - от 380 до 750 нм, но и ближнего ультрафиолета (UV) - от 200 до 380 нм.

Последнее обстоятельство не исключает целесообразности выпуска недорогих спектрофотометров, не "имеющих источника ультрафиолетового излучения и работающих только в видимой части оптического диапазона волн.

Целью упомянутого и очень важного режима работы спектрофотометров - режима сканирования - является построение спектральной кривой поглощения (абсорбции) и нахождение на ней пиков, а также исследование процессов интерференции и поиск ложных пиков, приводящих к ошибочным результатам при спектро-фотометрических исследованиях.

Основные компоненты однолучевого спектрофотометра показаны на рис. 3.32.

Принцип работы спектрофотометра. Полихроматический свет от источника проходит через монохроматор, который разлагает белый свет на цветовые компоненты. Монохроматическое излучение с дискретным интервалом в несколько нанометров проходит через ту часть прибора, где располагается образец с исследуемой пробой.

Источник света. Спектрофотометр UV/VIS (ультрафиолет + видимый свет) имеет два источника света: для видимого участка спектра и источник ультрафиолета - от 100 до 390 нм.

Источником видимого света служит вольфрамовая, как правило, галогенная лампа, дающая постоянный поток света в диапазоне 380- 950 нм, являясь стабильным и долговечным источником световой энергии со средним сроком службы более 500 ч.

В качестве источника УФ используются водородные или дейтериевые лампы. Ультрафиолетовые лампы, содержащие дейтерий, имеют высокую интенсивность излучаемого потока и непрерывный спектр в диапазоне от 200 до 360 нм.

Устройство и принцип работы спектрофотометра

На рис. 3.33 представлена обобщенная структурная схема спектрофотометра.

Рассмотрим взаимодействие и функциональное назначение элементов структурной схемы.

Цвет является ощущением, что возникает в человеческом мозге из-за цветового стимула (лучистая энергия, которая проникает в человеческий орган зрения). Но бывают ситуации, когда цвет необходимо измерить.

Электронный оптический аппарат, которым измеряют цвет называется спектрофотометр. С его помощью измеряют величину излучения в нужной области видимого спектра.Данный прибор более точен по сравнению с колориметром. Образец для измерения может иметь вид жидкости, твердого тела, пасты, гранул, пленки либо порошка.

Он пропускает либо отражает падающий на него свет от источника освещения.

Измерение спектрофотометром происходит следующим образом: встроенная лампа (источник освещения) излучает измерительный свет, он отражается от образца, призмы (либо дифракционные решетки) разделяют его на части, каждая часть имеет свою полосу пропускания (обычно это 10 нанометров). Свет от каждой из этих частей попадает на фоточувствительный элемент. Матрица этих элементов выдаст все данные об энергетическом распределении по отраженному, поглощенному либо пропущенному образцом излучаемому спектру. Как итог получается коэффициент отражения либо пропускания, он выражается в процентах.

Спектрофотометры обладают целым набором технических параметров, которые влияют на выбор модели прибора. Даже конструкцию спектрофотометра определяет область его применения.

Выбирая спектрофотометр, нужно узнать, какой источник излучения указан в документации.

Данный параметр обозначается заглавной буквой латинского алфавита:

  • свет от электрической лампочки со световой температурой, равной 2856 Кельвинам (A);
  • свет солнца, но не прямой, со световой температурой, равной 6774 Кельвинам (C);
  • естественное (дневное освещение) со световой температурой, равной 5000 Кельвинам (D);
  • естественное (дневное освещение) со световой температурой, равной 6500 Кельвинам (D65).

Диаметр площади для измерения цвета также имеет большое значение. Если предстоит проводить измерение цвета гранул, порошка, искусственных камней либо поверхностей с неоднородным окрашиванием, то нужен прибор с большой апертурой, чтобы была хорошая сходимость итогов измерения. Однако иногда возникает необходимость и в небольшом диаметре площади для измерения цвета.

Важными параметрами спектрофотометра являются повторяемость и воспроизводимость итогов измерения.

  • Воспроизводимость определяется близостью итогов измерения одного объекта одинаковыми методами и правилами одного документа с использованием разного оборудования и различными лаборантами в различные отрезки времени и в разных лабораториях.
  • Повторяемость определяется близостью итогов измерения одного объекта одинаковыми методами и правилами одного документа с применением одного оборудования в одной лаборатории одним лаборантом.

Приборы спектрофотометры подразделяются на несколько категорий:

  1. Если нужны точный анализ цвета, испытания и аттестация сырьевых материалов, то применяют стационарные приборы (для исследований, измерения степени пропускания прозрачных предметов и белизны предмета с ультрафиолетовыми компонентами). Они обладают хорошей прочностью конструкции, большой измерительной головкой и большим измерительным отверстием. В них расширены возможности измерения цвета (можно измерять и на отражение, и на пропускание).
  2. Спектрофотометры портативной конфигурации дают возможность измерить цвет в режиме реального времени и на любом этапе производственного процесса. Такие приборы легкие и очень удобные, их можно транспортировать. У них есть не только измерительная головка, но и мощная система микропроцессоров для анализирования информации, полученной во время измерения. Все результаты измерений выводятся жидкокристаллический экран прибора, а в памяти, которая встроена в прибор, можно сохранить большое число данных и допустимые критерии. Эти спектрофотометры функционируют и отдельно от компьютера. Их оснащают угловой, сферической либо многоугловой геометрией измерений.

Таблица. Операции и средства поверки спектрофотометров инфракрасных согласно ГОСТ 8.657-2009.

Наименование операции Номер пункта стандарта Наименование и тип основного или вспомогательного средства поверки; обозначение нормативного документа, устанавливающего технические требования и (или) метрологические и основные технические характеристики средства поверки
Внешний осмотр 7.1 -
Опробование 7.2 Пленка полистирола толщиной 0,025...0,070 мм по ГОСТ 20282
Определение разрешающей способности 7.3 Газовая кювета, заполненная аммиаком под давлением 4·10 3 Па, с длиной поглощающего слоя 100 мм из набора поверочных средств для инфракрасных спектрофотометров НПС-ИКС; пары воды в атмосфере
Определение погрешности градуировки шкалы волновых чисел 7.4 Эталонные средства измерений 2-го разряда по рекомендации (стандартные образцы): пленка полистирола толщиной 0,025…0,070 мм или кюветы, заполненные инденом, с поглощающим слоем толщиной 0,1 и 0,025 мм, или кювета, наполненная аммиаком под давлением 4·10 3 Па, с длиной поглощающего слоя 100 мм, или диоксид углерода и пары воды в атмосфере (характеристики спектров приведены в приложениях А и Б). Лупа с десятикратным увеличением по ГОСТ 25706
Определение уровня мешающего излучения 7.5 Фотометрический секторный диск с коэффициентом пропускания 10% из эталонного средства измерений ПКС-731. Фильтры из набора поверочных средств для инфракрасных спектрофотометров НПС-ИКС по приложению В
Определение абсолютной основной погрешности спектрофотометра 7.6 Фотометрические секторные диски с коэффициентами пропускания 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80% и 90% из эталонного средства измерений ПКС-731. Предел допускаемой погрешности измерений коэффициентов пропускания - не более 0,3%

При выборе спектрофотометра, помимо других технических параметров, необходимо обратить внимание и на геометрию измерения (первое значение - это освещение образца, второе значение - отраженный световой поток). Геометрия измерения определяет, как образец освещен и как наблюдается. Существует несколько геометрий освещения, чтобы измерять спектр отраженного сигнала, которые установлены на заседании комиссии по вопросам освещения, членами которой являются специалистами из разных стран.

Есть несколько измерительных геометрий:

  • 45/0 - образец освещен пучками света (единичным пучком), их оси с нормалью к образцовой поверхности создают угол в 45 градусов. Направление наблюдения и нормаль к образцовой поверхности создают угол в 10 градусов. А угол, образованный осью освещения пучка и одним из его лучиков, равен 5 градусам. Эти параметры соблюдаются и в пучке наблюдения.
  • 0/45 - образец освещен пучком света, его ось с нормалью к образцовой поверхности создают угол в 10 градусов. Образец наблюдают под углом в 45 градусов к его нормали. А угол, образованный осью пучка освещения и одним из его лучиков, равен 5 градусам. Эти параметры соблюдаются и в пучке наблюдения.
  • D/0 - образец освещен диффузно интегрирующей сферой (любой диаметр). Нормаль к образцовой поверхности и ось пучка наблюдения создают угол, равный 10 градусам. Угол, образованный осью наблюдаемого пучка и одним из его лучиков, равен 5 градусам.
  • 0/D - образец освещен пучком света, его ось с нормалью к образцовой поверхности создают угол 10 градусов. Световой поток отражается и собирается интегрирующей сферой. Угол, образованный осью освещаемого пучка и одним из его лучиков, равен 5 градусам.

Сейчас применяют модели спектрофотометров, имеющие измерительную геометрию, обозначаемую 45/0 и D/0.

Приборы, чья измерительная геометрия обозначена 45/0, являются дешевыми и портативными. Их применяют, контролируя цвет и измеряя шкалу теста (создание ICC профилей). Сначала они обладали одним световым источником, а потом появились спектрофотометры с симметричными световыми источниками (их два).

Специалисты заметили, что в цветах образцов, освещаемых с различных сторон, есть весьма заметные отличия.

Чтобы эти различия усреднить, начали применять спектрофотометры со световыми источниками в виде колец (геометрия измерения 45/0:c). Однако их нельзя использовать для металлизированных и глянцевых образцов (свет отражается зеркально, измерения обладают большой погрешностью).

Приборы, чья геометрия измерения D/0, лишены таких ограничений, а образец имеет диффузное освещение. В них зеркальную составляющую исключают, размещая приемник света под углом, равным 8 градусам, к нормали, и размещая ловушку блеска (она включает либо выключает зеркальный компонент) напротив.

Когда свет не падает на образцовую поверхность под углом 8 градусов из-за ловушки блеска, то он не отразится зеркально, а будет лишь диффузный свет отраженного потока. Получается измерительная геометрия, которую принято обозначать D/8. Зеркальную ловушку в закрытом виде (включение зеркального компонента) обозначают как D/8:i. Зеркальную ловушку в открытом виде (исключение зеркального компонента) обозначают как D/8:e.

Существуют предметы, окрашенные в особые цвета (вкрапления из металла либо жемчужные пигменты), чтобы они выделялись на общем фоне похожих предметов. И дать визуальную оценку таким предмета при помощи спектрофотометров с угловой либо со сферической геометрией становится затруднительно. Поэтому используют приборы с многоугловой геометрией (объект подсвечивается под углом 45 градусов, а измерение выполняется под незеркальным углом 15 градусов, 25 градусов, 45 градусов, 75 градусов и 110 градусов).

Спектрофотометры различают по точности измерения и по техническим возможностям. Типы спектрофотометров определяются задачами цветового управления. К примеру, когда нужно измерить образцы с флуоресцентными колорантами либо с оптическим отбеливателем, тогда нужно применить прибор, геометрия измерения которого сферическая, источник освещения импульсный и есть устройство калибровки ультрафиолетовой составляющей в спектре излучения спектрофотометра.

Чтобы измерять образцы на пропускание (жидкость либо пленочка), нужно применять прибор, геометрия измерения которого сферическая и есть возможность измерять пропускание света (общее либо направленное).

Когда спектрофотометр нужен только для контролирования цвета (не нужен расчет рецепта цветов), то возможно применять прибор с угловой геометрией (45/0 либо 0/45). Но, когда важно контролировать цвет и рассчитывать цветовой рецепт, то обязательно нужен прибор, геометрия цвета которого сферическая (D/8).

Специалисты маркетинга применяют спектрофотометры, чтобы оценивать качество цвета товара и упаковки, а также для описания в количественном эквиваленте впечатлений людей, которые появляются благодаря органам зрения. Спектрофотометры используют, чтобы измерять численные различия в цвете эталона и образца товара, и чтобы создавать рецепты красок.

Используют спектрофотометры при изготовлении пищевых продуктов, чтобы определять цвет готового изделия, которую будут употреблять в пищу.

Данные приборы необходимы и на предприятиях, выпускающих пластмассы, ткани, лакокрасочные материалы, косметическую продукцию.

Таким образом, можно сделать вывод о том, что: спектрофотометры могут различаться конфигурацией и измерительной геометрией. От области применения зависит выбор типа прибора.

материалы по теме

Лоренсвилль, штат Нью-Джерси - Международный лидер в сфере решений уравнивания цветом и технологий коммуникации цвета Datacolor® на днях оповестил о выпуске портативного спектрофотометра Datacolor 20D, специально спроектированного для ритейлерских торговых центров лакокрасочных товаров и хозяйственных магазинов. В комбинации с новым программным продуктом Datacolor PAINT v. 2.x, Datacolor 20D предоставляет лучшую в отрасли точность цветового равенства в применении красок и покрытий. Этот очень точный спектрофотометр дает лучшее цветовое совпадение с первого измерения на рынке, повышая производительность, экономию средств и удовлетворенность клиентов.