Электрическая связь определение. Электрическая связь. Сети электросвязи. Основные понятия и определения

Электрическая связь определение. Электрическая связь. Сети электросвязи. Основные понятия и определения

Информация - сведения о каких-либо процессах, событиях, фактах или предметах. Известно, что 80..90% информации человек получает через органы зрения и 10..20% - через органы слуха. Другие органы чувств дают в сумме 1..2% информации. Физиологические возможности человека не позволяют обеспечить передачу больших объемов информации на значительные расстояния.

Связь - техническая база, обеспечивающая передачу и прием информации между удаленными друг от друга людьми или устройствами. Аналогия между связью и информацией такая же, как у транспорта и перевозимого груза. Средства связи не нужны, если нет информации, как не нужны транспортные средства при отсутствии груза.

Сообщение - форма выражения (представления) информации, удобная для передачи на расстояние. Различают оптические (телеграмма, письмо, фотография) и звуковые (речь, музыка) сообщения. Документальные сообщения наносятся и хранятся на определенных носителях, чаще всего на бумаге. Сообщения, предназначенные для обработки на ЭВМ, принято называть данными .

Информационный параметр сообщения - параметр, в изменении которого "заложена" информация. Для звуковых сообщений информационным параметром является мгновенное значение звукового давления, для неподвижных изображений - коэффициент отражения, для подвижных - яркость свечения участков экрана.

По характеру изменения информационных параметров различают непрерывные и дискретные сообщения.

Сигнал - физический процесс, отображающий передаваемое сообщение. Отображение сообщения обеспечивается изменением какой-либо физической величины, характеризующей процесс. Эта величина является информационным параметром сигнала .

Сигналы, как и сообщения, могут быть непрерывными и дискретными . Информационный параметр непрерывного сигнала с течением времени может принимать любые мгновенные значения в определенных пределах. Непрерывный сигнал часто называют аналоговым . Дискретный сигнал характеризуется конечным числом значений информационного параметра. Часто этот параметр принимает всего два значения. На Рис. 3.1 показаны виды аналогового и дискретного сигналов.

В технике связи наряду с абсолютными единицами измерения параметров электрических сигналов (мощность, напряжение и ток) широко используются относительные единицы.

Уровнем передачи сигнала в некоторой точке канала или тракта называют логарифмическое преобразование отношения энергетического параметра S (мощности, напряжения или тока) к отсчетному значению этого же параметра.

Правило преобразования определяется формулой:

где m - масштабный коэффициент; a - основание логарифма.

Уровни передачи измеряются в децибелах, если справедливы соотношения:

для уровней по мощности, дБм;

для уровней по напряжению, дБн;

Уровень передачи называется абсолютным, если P 0 =1 мВт. Если теперь задать R 0 , то при заданных значениях мощности и сопротивления легко получить соответствующие величины напряжения U 0 и тока I 0:

При R 0 = 600 Ом в практических расчетах принимают округленные значения: для U 0 = 0,775 В, а для I 0 = 1,29 мА.

Измерительные уровни служат для определения уровней передачи с помощью измерительных приборов, называемых указателями уровня.

Для измерения уровня наиболее часто применяется схема известного генератора, показанная на Рис. 3.2.

Рис. 3.1 Виды сигналов: а - аналогового, б - дискретного

Рис. 3.2 Схема известного генератора

В этой схеме ко входу исследуемого объекта, например некоторого четырехполюсника, подключается генератор испытательного сигнала с полностью определенными параметрами, т.е. должно быть известно его выходное сопротивление R Г, развиваемая ЭДС E Г (или напряжение на входе объекта U ВХ). Входное сопротивление объекта R Г также должно быть известно. К выходу объекта подключается указатель уровня с входным сопротивлением, равным номинальному значению сопротивления нагрузки; реальная нагрузка при этом отключается.

В качестве испытательного при измерении уровней передачи чаще всего применяют одночастотный синусоидальный сигнал, частота которого также должна быть известна, а начальная фаза, как правило, не фиксируется.

Если по значению параметров подключенный генератор испытательного сигнала обладает свойством нормального, т.е. его внутреннее сопротивление равно 600 Ом, развиваемая ЭДС равна 1,55 В, то измеренный на сопротивлении R Н уровень называется измерительным.

В дальнейшем будем рассматривать принципы и средства связи, основанные на использовании электрической энергии в качестве переносчиков сообщений, т.е. электрических сигналов . Выбор электрических сигналов для переноса сообщений на расстояние обусловлен их высокой скоростью распространения (около 300 км/мс)

Описание сигналов электросвязи некоторым образом необходимо для их адекватной обработки в процессе передачи. Описанием сигнала может служить некоторая функция времени. Определив так или иначе данную функцию, определяем и сигнал. Однако такое полное определение сигнала не всегда требуется. Достаточно описание в виде нескольких параметров , характеризующих основные свойства сигнала с точки зрения его передачи.

Если провести аналогию с транспортированием грузов, то для транспортной сети определяющими параметрами груза являются его масса и габариты. Сигнал также является объектом транспортирования, а техника связи - техникой транспортирования (передачи) сигналов по каналам связи.

Основными первичными сигналами электросвязи являются: телефонный, звукового вещания, факсимильный, телевизионный, телеграфный, передачи данных.

Телефонный (речевой) сигнал . Звуки речи образуются в результате прохождения воздушного потока из легких через голосовые связки и полости рта и носа. Частота импульсов основного тона (f 0 на Рис. 3.3) лежит в пределах от 50..80 Гц (бас) до 200..250 Гц (женский и детский голоса). Импульсы основного тона содержат большое число гармоник (до 40) (2f 0 ,..,nf 0 на Рис. 3.3), причем их амплитуды убывают с увеличением частоты со скоростью приблизительно 12 дБ на октаву (кривая 1 на Рис. 3.3). (Напомним, что октавой называется диапазон частот, верхняя частота которого в два раза выше нижней. Т.о. амплитуда гармоники 2f 0 на 12 дБ больше, чем гармоники 4f 0 и т.д.). При разговоре частота основного тона f 0 меняется в значительных пределах.

Рис. 3.3 Спектральный состав речевого сигнала

В процессе прохождения воздушного потока из легких через голосовые связки и полости рта и носа образуются звуки речи, причем мощность гармоник частоты основного тона меняется (кривая 2 на Рис. 3.3). Области повышенной мощности гармоник частоты основного тона называются формантами (см. Рис. 3.3). Различные звуки речи содержат от двух до четырех формант. Высокое качество передачи телефонного сигнала характеризуется уровнем громкости, разборчивостью, естественным звучанием голоса, низким уровнем помех. Эти факторы определяют требования к телефонным каналам.

Основными параметрами телефонного сигнала являются:

­ мощность телефонного сигнала P ТЛФ. Согласно данным МСЭ-Т средняя мощность телефонного сигнала в точке с нулевым измерительным уровнем на интервале активности составляет 88 мкВт. С учетом коэффициента активности (0,25) средняя мощность телефонного сигнала P СР равна 22 мкВт. Кроме речевых сигналов в канал связи могут поступать сигналы управления, набора номера и пр. С учетом этих сигналов среднюю мощность телефонного сигнала принимают равной 32 мкВт, т.е. средний уровень телефонного сигнала составляет p СР = 10 lg (32 мкВт/1мВт) = - 15 дБм0;

­ коэффициент активности телефонного сообщения, т.е. отношение времени, в течение которого мощность сигнала на выходе канала превышает заданное пороговое значение, к общему времени занятия канала для разговора. При разговоре каждый из собеседников говорит приблизительно 50% времени. Кроме того, отдельные слова, фразы отделяются паузами. Поэтому коэффициент активности составляет 0,25..0,35.

­ динамический диапазон определяется выраженным в децибелах отношением максимальной и минимальной мощности сигнала

Динамический диапазон телефонного сигнала составляет D С =35...40 дБ;

­ пик-фактор сигнала

который составляет 14 дБ. При этом максимальная мощность, вероятность превышения которой исчезающе мала, равна 2220 мкВт (+3,5 дБм0);

­ энергетический спектр речевого сигнала - область частот, в которой сосредоточена основная энергия сигнала (Рис. 3.4)

где - спектральная плотность среднего квадрата звукового давления; - порог слышимости (минимальное звуковое давление, которое начинает ощущаться человеком с нормальным слухом на частотах 600..800 Гц); ?f = 1 Гц. Из Рис.3.4 следует, что речь представляет собой широкополосный процесс, частотный спектр которого простирается от 50..100 Гц до 8000..10000 Гц. Установлено, однако, что качество речи получается вполне удовлетворительным при ограничении спектра частотами 300..3400 Гц. Эти частоты приняты МСЭ-Т в качестве границ эффективного спектра речи. При указанной полосе частот слоговая разборчивость составляет около 90%, разборчивость фраз - более 99% и сохраняется удовлетворительная натуральность звучания.

Рис. 3.4 Энергетический спектр речевого сигнала

Сигналы звукового вещания . Источником звука при передаче программ вещания обычно являются музыкальные инструменты или голос человека.

Динамический диапазон вещательной передачи следующий: речь диктора 25..35 дБ, художественное чтение 40..50 дБ, вокальные и инструментальные ансамбли 45..55 дБ, симфонический оркестр до 65 дБ. При определении динамического диапазона максимальным считается уровень, вероятность превышения которого равна 2%, а минимальным - 98%.

Средняя мощность сигнала вещания существенно зависит от интервала усреднения. В точке с нулевым измерительным уровнем средняя мощность составляет 923 мкВт при усреднении за час, 2230 мкВт - за минуту и 4500 мкВт - за секунду. Максимальная мощность сигнала вещания в точке с нулевым измерительным уровнем составляет 8000 мкВт.

Частотный спектр сигнала вещания расположен в полосе частот 15..20000 Гц. При передаче как телефонного сигнала, так и сигналов вещания полоса частот ограничивается. Для достаточно высокого качества (каналы вещания первого класса) эффективная полоса частот должна составлять 0,05..10 кГц, для безукоризненного воспроизведения программ (каналы высшего класса) 0,03...15 кГц.

Факсимильный сигнал формируется методом построчный развертки. Частотный спектр первичного факсимильного сигнала определяется характером передаваемого изображения, скоростью развертки и размерами сканирующего пятна. Для параметров факсимильных аппаратов, рекомендованных МСЭ-Т, верхняя частота сигнала может составлять 732, 1100 и 1465 Гц. Динамический диапазон сигнала составляет около 25 дБ, пик-фактор равен 4,5 дБ при 16 градациях яркости.

Телевизионный сигнал также формируется методом развертки. Анализ показывает, что энергетический спектр телевизионного сигнала сосредоточен в полосе частот 0..6 МГц. Динамический диапазон D С 40 дБ, пик-фактор 4,8 дБ.

Основным параметром дискретного сигнала с точки зрения его передачи является требуемая скорость передачи (бит/с).

Аналогичные параметры определяются и для каналов связи. Параметры каналов связи должны быть не меньше соответствующих параметров сигналов.

Свести параметры аналоговых сигналов к единому параметру (скорости передачи) позволяет преобразование этих сигналов в цифровые (см. подраздел 8.2 "Цифровая обработка аналоговых сигналов").

Система электросвязи - совокупность технических средств и среды распространения, обеспечивающая передачу сообщений . Обобщенная структурная схема систем электросвязи показана на Рис. 3.5.

Рис. 3.5 Обобщенная структурная схема систем электросвязи

Сообщение при помощи преобразователя сообщение-сигнал преобразуется в первичный электрический сигнал. Первичные сигналы не всегда удобно (а иногда невозможно) непосредственно передавать по линии связи. Поэтому первичные сигналы при помощи передатчика ПРД преобразуются в так называемые вторичные сигналы, характеристики которых хорошо согласуются с характеристиками линии связи.

Канал связи - совокупность технических устройств (преобразователей) и среды распространения, обеспечивающих передачу сигналов на расстояние.

Каналы и системы связи, использующие искусственную среду распространения (металлические провода, оптическое волокно), называются проводными, а каналы и системы связи, в которых сигналы передаются через открытое пространство - радиоканалами и радиосистемами.

Условная классификация современных видов электросвязи показана на Рис. 3.6. Все виды электросвязи по типу передаваемых сообщений могут быть разделены на предназначенные для передачи звуковых сообщений, оптических сообщений в виде подвижных изображений, оптических сообщений в виде неподвижных изображений и сообщений между ЭВМ. В зависимости от назначения сообщений виды электросвязи могут быть разделены на предназначенные для передачи сообщений индивидуального и массового характера.

Рис. 3.6 Современные виды электросвязи

Приведенная на Рис. 3.6 классификация достаточно условна, поскольку в последнее время наметилась тенденция объединения видов электросвязи в единую интегральную систему на основе цифровых методов передачи и коммутации для передачи всех видов сообщений.

Подобные документы

    Предназначение канала связи для передачи сигналов между удаленными устройствами. Способы защиты передаваемой информации. Нормированная амплитудно-частотная характеристика канала. Технические устройства усилителей электрических сигналов и кодирования.

    контрольная работа , добавлен 05.04.2017

    Связь как отрасль хозяйства, обеспечивающая прием и передачу информации. Особенности и устройство телефонной связи. Услуги спутниковой связи. Сотовая связь как один из видов мобильной радиосвязи. Передача сигнала и соединение с помощью базовой станции.

    презентация , добавлен 22.05.2012

    Ретранслятор как комплекс оборудования, предназначенного для обеспечения связи между двумя и более радиопередатчиками, удаленными друг от друга на большие расстояния. Принцип его действия, структура и компоненты. Выбор внешней и внутренней антенны.

    курсовая работа , добавлен 26.01.2015

    Характеристики и параметры сигналов и каналов связи. Принципы преобразования сигналов в цифровую форму и требования к аналогово-цифровому преобразователю. Квантование случайного сигнала. Согласование источника информации с непрерывным каналом связи.

    курсовая работа , добавлен 06.12.2015

    Современные виды электросвязи. Описание систем для передачи непрерывных сообщений, звукового вещания, телеграфной связи. Особенности использования витой пары, кабельных линий, оптического волокна. Назначение технологии Bluetooth и транковой связи.

    реферат , добавлен 23.10.2014

    Зарождение концепции многоуровневой иерархической структуры сети телефонной связи. Электронная технология, позволившая перевести все средства телефонии на элементную базу. Развитие IР-телефонии, обеспечивающей передачу речи по сетям пакетной коммутации.

    реферат , добавлен 06.12.2010

    Функциональная схема и основные элементы цифровой системы. Каналы связи, их характеристики. Обнаружение сигнала в гауссовом шуме. Алгоритмы цифрового кодирования. Полосовая модуляция и демодуляция. Оптимальный прием ДС сигнала. Методы синхронизации в ЦСС.

    курс лекций , добавлен 02.02.2011

    Расчет практической ширины спектра сигнала и полной энергии сигнала. Согласование источника информации с каналом связи. Расчет интервала дискретизации и разрядности кода, вероятности ошибки при воздействии "белого шума". Определение разрядности кода.

    курсовая работа , добавлен 07.02.2013

    Схема цифрового канала связи. Расчет характеристик колоколообразного сигнала: полной энергии и ограничения практической ширины спектра. Аналитическая запись экспоненциального сигнала. Временная функция осциллирующего сигнала. Параметры цифрового сигнала.

    курсовая работа , добавлен 07.02.2013

    Принцип действия телефонной сети. Классификация внутриучрежденских телефонных систем, их достоинства. Некоторые правила телефонного общения секретаря с клиентом. Основные стандарты сотовой радиотелефонной связи. Особенности и удобство факсимильной связи.

Материал из Юнциклопедии


Век научно-технической революции характеризуется информационным взрывом, т. е. огромным количеством самой разнообразной информации. Чтобы передать какую-либо информацию (звук, изображение, текст телеграммы, дифровые данные для ЭВМ) по сети электрической связи, необходимо сначала превратить ее в электрические сигналы, затем направить их через линию связи, а на другом конце линии преобразовать полученные сигналы снова в информацию. Преобразование передаваемой информации в электрические сигналы и последующая «расшифровка» принятых сообщений происходят в аппаратах связи, например в телефонном, телеграфном, в передающем и приемном устройствах радиовещания или телевидения, которые включаются на концах линии связи и поэтому называются оконечными.

Передающий и приемный оконечные аппараты расположены в различных пунктах. Нет необходимости постоянно связывать эти пункты прямой линией связи: достаточно установить коммутационную (соединительную) станцию, которая бы соединяла линии связи, идущие от аппаратов, лишь на время передачи и приема сигналов. Такими коммутационными станциями являются автоматические телефонные станции (АТС), объединяющие тысячи телефонов и быстро находящие номер каждого из них, и автоматические телеграфные станции, в которых поступающие от отправителей телеграммы могут при необходимости накапливаться, сортироваться по их важности, а уж затем, через некоторое время, посылаться дальше.

Линии связи появились в середине XIX в. когда заработал электрический телеграф. Телеграфные линии связи изготавливали из железной или медной проволоки и подвешивали на столбах, прикрепляя к изоляторам. Чтобы передать больше сообщений, на каждый столб подвешивалось несколько десятков проводов. Позднее покрытые резиновой изоляцией провода стали собирать в толстые жгуты, заключая их для предохранения от повреждений в оболочку. Так «были созданы кабельные линии связи (см. Кабель). Когда изобрели телефон, то сначала пользовались уже существовавшими телеграфными линиями. Только со временем стало ясно, что для передачи телеграмм и для телефонных разговоров надо иметь линии связи разного «качества», так как их электрические сигналы состоят из токов различных частот, или, как говорят, имеют разную полосу частот.

странственные радиоволны могут прийти к радиоприемнику разными путями; 14 - междугородный кабель связи с промежуточными усилительными пунктами; 15 - кабель для приема телефонной, телеграфной и телевизионной информации от спутника связи; 16, 17, 18 - кабели для передачи информации по телефону, телеграфу, телевидению; 19 - длинноволновая радиосвязь с кораблем. При передаче телеграфных сигналов требуется полоса частот всего 50-100 Гц, для телефонной связи - примерно 3 кГц (точнее, от 300 до 3400 Гц); для хорошей передачи музыки - 20 кГц; огромную полосу частот - примерно 6 МГц занимает телевизионный сигнал. Простейшая линия электрической связи - это пара изолированных друг от друга медных проводников. Медь - ценный металл, используемый во многих отраслях народного хозяйства. Чтобы сэкономить дефицитный металл, инженеры предложили по одной и той же паре проводов передавать не одно, а несколько сообщений - телефонных разговоров, телеграмм и т. п. С этой целью была создана многоканальная связь, которая позволяет передавать по одной линии связи одновременно и независимо друг от друга множество электрических сигналов. Но передавать по одной линии множество электрических сигналов с различной информацией без особых «хитростей» нельзя, так как все сигналы имеют одинаковые или почти одинаковые (причем относительно низкие) частоты и, следовательно, будут мешать друг другу: каждый из переданных сигналов будет приниматься каждым приемником, вместо того чтобы быть принятым только «своим». Секрет многоканальной связи заключается в том, что каждый сигнал в передатчике модулирует (т. е. изменяет амплитуды, частоты или фазы колебаний) «свой», отличающийся от других по частоте высокочастотный ток. Таким образом, модулированные разными сигналами информации высокочастотные токи могут одновременно передаваться по одной линии, не мешая друг другу и «перенося» каждый «свой» сигнал информации, т. е. в линии как бы создается много отдельных, не мешающих друг другу каналов передачи. Каждый приемник с помощью включенного на его входе электрического фильтра (см. Фильтр электрический) принимает только «свой» модулированный высокочастотный ток, а детектор приемника вновь превращает этот ток в сигнал исходной информации. Существует и другой метод многоканальной связи, когда сигналы отдельных каналов передаются по линии в различные промежутки времени и на приеме разделяются соответствующим распределителем. Для того чтобы непрерывные во времени сигналы (например, телефонные, вещательные и др.) могли передаваться таким методом, эти сигналы сначала дискретизируют во времени, т. е. каждый сигнал заменяют последовательностью отдельных его (дискретных) значений; затем эти значения кодируют, т. е. каждое из них заменяют соответствующей его величине комбинацией импульсов «1» и «0», аналогично комбинациям импульсов буквопечатающего телеграфного кода (см. Телеграфная связь). Чем больше создается различных каналов по одной линии, тем меньше продолжительность каждого импульса всех передаваемых сигналов всех каналов, поэтому тем шире должна быть полоса частот, которая используется в линии, чтобы импульсы передавались по ней без искажений. Количество отдельных каналов передачи, которые таким образом могут быть созданы на линиях связи различного типа, определяется тем, токи каких частот хорошо передаются по этим линиям. Токи одних частот могут быть использованы для многоканальной связи в различных кабелях, а токи других - в радиорелейных линиях, волноводах и световодах, линиях, использующих искусственные спутники Земли. Для примера можно сказать, что уже сегодня по одной паре коаксиального кабеля можно организовать свыше 10 тыс. одновременных телефонных разговоров, примерно столько же - по радиорелейным линиям и линиям, использующим искусственные спутники Земли; по волноводным линиям могут одновременно разговаривать до сотни тысяч абонентов и еще больше - по световодам. Электрические сигналы по мере их продвижения по линии связи постепенно ослабевают. На языке связистов это явление называется затуханием. Чтобы поддержать уровень сигналов, прибегают к их усилению с помощью усилителей, которые устанавливают через равные промежутки вдоль всей линии связи. Большинство усилителей управляется и снабжается электрической энергией с помощью дистанционного управления. Совокупность различных линий связи - кабельных, радиорелейных, волноводов, линий связи через искусственные спутники Земли и линий радиосвязи, на длинных, средних и коротких волнах, а также всех оконечных аппаратов и всех коммутационных станций - образует Единую автоматизированную систему связи (ЕАСС).


Все виды электросвязи по типу передаваемых сообщений могут быть разделены на предназначенные для передачи звуковых и оптических сообщений. Основной объем передаваемых сообщений (основной трафик) составляет телефонная связь. Телефонная связь - вид электросвязи, обеспечивающий передачу и прием речевых сообщений. Для организации связи используется типовой канал тональной частоты (КТЧ), спектр которого составляет 0,3...3,4 кГц. Спектр речевого сигнала Телефонный (речевой) сигнал образуется при помощи микрофона, в котором звуковые колебания преобразуются в электрический сигнал. Звуки речи образуются в результате прохождения воздушного потока из легких через голосовые связки и полости рта и носа. Каждый звук содержит определенный спектр частот, каждому гласному и согласному звуку соответствует определенная область резонанса (повышенная мощность), называемая формантой. Из графика (рис. 4) видно, что форманта буквы «а» находится в спектре частот, близких к частоте 950 Гц, а форманта буквы «е» находится в спектре частот, близких к частоте 690 Гц. Установлено экспериментально, что все остальные форманты гласных и согласных звуков, из которых складывается речь, не выходят за пределы спектра 0,3 - 3,4 кГц и 90% слогов и 99% фраз в этом спектре восстанавливаются без искажений. Частота колебаний основного тона речи находится в пределах от 0,05 - 0,0 8 кГц (самый низкий мужской) до 0,2 – 0,25 кГц (самый высокий женский или детский). Частота колебаний основного тона лежит в пределах от 50… 80 Гц (бас) до 200… 250 Гц (детский и женский голоса).

Частотный спектр речи лежит в пределах: от 0,05 – 0,1 кГц до 8 - 10 кГц (рис. 5)

Мембрана U, В Форманты

Угольный порошок Е А

Линия

Звук Микрофон Батарея 0 0,3 0,69 0,95 3,4 7 кГц

Частоты

Рис. 5 . Формирование спектра речевого сигнала

Для передачи речевой информации требуются заметно меньшие скорости и частоты. Звуки речи различных людей отличаются количеством формант (спектральных областей резонирования при произношении звуков речи) и их частотами. Отдельные звуки могут иметь до шести формант, которые большей частью сосредоточены в диапазоне частот 0, 3...3,4 к Гц. Международным союзом электросвязи, сектор телефонии (МСЭ-Т) установлено, что качество речи считается удовлетворительным, если передаются шесть формант, т. е. спектр частот может быть ограничен диапазоном 0,3- 3,4 кГц. Именно эти частоты приняты и именно они используются для передачи речи в мире. Наряду с формантами имеются менее мощные составляющие звуковых частот, которые и придают голосу каждого человека индивидуальность, позволяющую безошибочно узнать говорящего. Спектр этих частот простирается от десятков герц до 7 кГц и выше, при этом тесты по различению звуков (артикуляции) убедительно показывают, что понятность и разборчивость речи улучшаются с увеличением ширины полосы частот. Для слогов в полосе 0,3 - 3,4 кГц точность составляет около 75%, а в полосе до 7 кГц превышает 95%. Скорость нормальной речи может достигать около 120 слов в минуту. При сжатии полосы спектра до 3,4 кГц может быть 40 неоднозначно принятых слов в минуту, а до 7 кГц - меньше четырех , что близко к точности речи.

Факсимильная связь обеспечивает передачу неподвижных черно-белых изображений. Требования к каналу передачи определяется спектром частот электросигналов, создаваемых факсимильными аппаратами в процессе преобразования неподвижных изображений. Сигнал формируется построчной разверткой. Частотный спектр первичного факсимильного сигнала определяется характером передаваемого изображения, скоростью развертки и размерами сканирующего пятна. Верхняя частота сигнала может составлять 732, 1100 и 1465 кГц. Спектр факсимильных сигналов обычно имеет полосу частот 1,5 – 3 кГц. Ширина спектра факсимильного сигнала зависит от скорости развертки изображения и размеров светового пятна. Например, на стандартном листе бумаге форматом А 4 в одной строке помещается примерно 1000 черно-белых элементов изображения при ширине светового пятна 0,2мм. Если скорость развертки составляет 60 строк в минуту, т.е. каждая строчка считывается за 1 с, то за эту секунду 500 раз будет осуществлен переход с черного на белое и наоборот, а, следовательно, максимальная частота чередования импульсов – 0,5 кГц.

Для передачи газет применяются высокоскоростные факсимильные аппараты с шириной светового пятна 0,05 мм (в обычном случае 0,1 - 0,2 мм). Это требует повышенную скорость развертки (в обычном режиме – 60 строк в мин.) Спектр факсимильного сигнала при передаче газетных полос расширен до 180 кГц.

Звуковое вещание (3В) - вид электросвязи, обеспечивающий передачу программ для непосредственного приема населением. Требования к типовому каналу звукового вещания зависят от желаемого класса звучания.

Источниками звука при передаче программ вещания обычно являются музыкальные инструменты или голос человека. Музыка, пение, звучание отдельных музыкальных инструментов или оркестров занимает значительно более широкую полосу частот, чем звучание речи. Кроме того, динамический диапазон сигналов вещательной передачи значительно шире, чем при передаче речи. Например, речь диктора имеет динамический диапазон 25-35 дБ, при художественном чтении - 40-50 дБ, симфонический оркестр - до 65 дБ.

Спектр звукового сигнала занимает полосу частот 15 Гц...20 кГц. В зависимости от требований к качеству воспроизведения ширина спектра сигнала вещания может быть ограничена.

Различают три класса каналов передачи звукового вещания:

высший класс - спектр передаваемых звуковых сигналов составляет 0,03 - 15 кГц, воспроизведение отличное;

1-й класс - спектр 0,05 - 10 кГц, достаточно высокое качество, образуется при объ

единении трех стандартных каналов ТЧ (строенный канал 3В);

2-й класс - спектр 0,1 - 6,3 кГц, качество - удовлетворительное, организуется путем объединения двух каналов ТЧ (сдвоенный).

Телевизионное вещание (ТВ) обеспечивает передачу программ черно-белого и цветного телевидения для непосредственного приема населением. Для него предусматривается два типовых канала - для передачи звуковых сигналов сопровождения и передачи изображения. Сигнал изображения формируется методом развертки.

Любое подвижное изображение – это, как правило, смена через каждые 40 мс одного неподвижного изображения другим, т.е. 25 кадров в 1 с. За время между сменой кадров "просматривается" все неподвижное изображение (625 строк, 833 элемента в каждой строке), содержащее полмиллиона элементарных площадок, или элементов, т.е. каждый элемент просматривается в течение полумиллионной доли от отведенных на просмотр всего кадра 40 мс (две десятимиллиардных доли секунды). При этом человеческий глаз "видит" то, чего уже нет на экране, еще 0,1с. На самом же деле никакого изображения нет на экране, есть только светящаяся точка, бегущая по строкам (экрану) с невероятной скоростью. Светящуюся точку перемещает электронный луч, который сфокусирован с помощью специальных электрических линз и способен отклоняться под действием магнитного поля и развертывать изображение.

Конструкция электронно-лучевой трубки имитирует глаз: объектив – хрусталик, диафрагма – зрачок, искусственная сетчатка из серебряно-цезиевого сплава – сетчатка глаза, но в очень примитивном виде, т.к. она содержит всего 0,5 млн. фоторецепторов, а это намного меньше, чем у глаза.

На основании вышесказанного ширина спектра телевизионного сигнала:

625 строк х 833 элементов в строке = 520 625 элементов в кадре;

25 кадров х 520 625 = 13 015 625 элементов,

следовательно, переход с черного на белое, или наоборот, происходит примерно 6,5 млн. раз в секунду, т.е. 6,5 МГц – верхняя граница ширины спектра телевизионного сигнала, нижней принято считать нижнюю границу звукового сигнала – 0,05 к Гц . Ширина полосы видеосигнала, занимаемая каналом ТВ; составляет 0,05 - 6,5 МГц, динамический диапазон ТВ - сигнала D c ≈ 40 дБ. Для организации одного канала ТВ требуется 1620 каналов ТЧ.

При передаче данных осуществляется передача и прием сообщений в цифровой форме для обработки вычислительными машинами - компьютерами. Условно различают низкоскоростную передачу (до 64 кбит/с), среднескоростную (2 Мбит/с) и высокоскоростную (от 2 Мбит/с).

Передача газетных полос для децентрализованной печати по каналам электросвязи - это разновидность факсимильной связи, обеспечивающая передачу газетных полос (неподвижных черно-белых изображений). Для передачи газет применяются высокоскоростные факсимильные аппараты с шириной светового пятна 0,05 мм (в обычном случае 0,1 - 0,2 мм). Это требует повышенную скорость развертки (в обычном режиме – 60 строк в мин.), спектр факсимильного сигнала при передаче газетных полос расширен до 180 кГц.

Видеотелефонная связь - вид электросвязи, обеспечивающий одновременную передачу речевых сообщений и изображений говорящих; требуется наличие двух типовых каналов: изображения и речевого телефонного канала тональной частоты.

Виды электросвязи, обеспечивающие передачу сообщений, записанных на носители, и прием этих сообщений с записью на носителе, называются документальной связью (передача данных, факсимильная связь и т.д.)

В зависимости от назначения сообщений виды электросвязи могут быть классифицированы на предназначенные для передачи сообщений индивидуального и массового характера. Телефонная, факсимильная, передача данных - эти виды связи используются для передачи индивидуальных сообщений. Сети телевизионного вещания, звукового вещания, видеотелефонной связи, передачи газетных полос предназначены для передачи массовых сообщений (рис. 6).

В зависимости от временного режима доставки сообщений виды электросвязи могут быть разделены на предназначенные для работы в реальном времени:

Телеконференция реального времени;

Видеоконференция (видеотелефония);

· Реальное время · (real time)
  • Отложенная доставка
  • (non-real time)
Сообщения индивиду - ального характера · Телеконференция · реального времени (chat)
  • Электронные документы: электронная почта (e-mail), персональный радиовызов (paging), телеконференции (news), позиционирование(GPS)
  • Документы: факс, телеграммы
· Видеоконференции (видеотелефония) · Видеонаблюдение
  • Видео по запросу
  • (Video on Demand)
· Телефония · Аудиотелеконференции
  • Речевая почта (voice- mail)
Сообщения массового характера · Звуковое вещание (прямые репортажи)
  • Звуковое вещание (записанные программы)
  • Автоматические информаторы
· Телевизионное вещание (прямые репортажи)
  • Телевизионное вещание
(записанные программы)
  • Передачи газет
  • Телетекст
Звуковые сообщения Подвижные сообщения Неподвиж-ные сообщения

Рис. 6. Современные виды электросвязи

Аудиотелеконференции;

Звуковое вещание и телевизионное вещание (прямые репортажи) и осуществляющие отложенную доставку сообщений:

Электронные документы - электронная почта, персональный радиовызов, телеконференции;

Документы - факс, телеграммы;

Видео по запросу;

Речевая почта;

Звуковое вещание и телевизионное вещание (записанные программы);

Передача газет;

В трафике реального времени допустимая задержка информации не должна превышать 0,1 с. В трафике отложенной доставки допускается временная задержка при передаче изображений 30 с, 50 с - при передаче голосовых данных, 100...150 с - при передаче аудиоинформации, так как временная задержка приводит к заметным искажениям передаваемой информации.

Приведенная на рис. 6 классификация достаточно условна, поскольку в последнее время наметилась тенденция объединения видов электросвязи в единую интегральную систему на основе цифровых методов передачи и коммутации для передачи всех видов сообщений.

САМОСТОЯТЕЛЬНАЯ РАБОТА. ИСТОРИЯ ЭЛЕКТРОСВЯЗИ

ЭЛЕКТРОСВЯЗЬ , связь, при к-рой передача информации любого вида (речевой, буквенно-цифровой, зрительной и т. д.) осуществляется электрич. сигналами, распространяющимися по проводам, или радиосигналами. В соответствии со способами передачи (переноса) сигналов различают проводную связь и радиосвязь; в различных системах Э. первую часто используют в сочетании с разновидностями второй (напр., с радиорелейной связью, спутниковой связью). По классификации, принятой Междунар. союзом электросвязи, к Э. относят, кроме того, передачу информации при помощи оптических (см. Оптическая связь) или др. электромагнитных систем связи. По характеру передаваемых сообщений Э. подразделяется на след. осн. виды: телефонная связь, обеспечивающая ведение телеф. переговоров между людьми; телеграфная связь, предназначенная для передачи буквенно-цифровых сообщений - телеграмм; факсимильная связь, при к-рой передаётся графическая информация - неподвижные изображения текста или таблиц, чертежей, схем, графиков, фотографий и т. п.; передача данных (телекодовая связь), целью к-рой является передача информации, представленной в формализованном виде (знаками или непрерывными функциями), для обработки этой информации ЭВМ или уже обработанной ими; видеотелефонная связь (см. Видеотелефон), служащая для одновременной передачи речевой и зрительной информации. При помощи технич. средств Э. осуществляются также проводное вещание, радиовещание (звуковое вещание) и телевизионное вещание (см. Телевидение).

Для установления Э. между отправителем (источником сообщений) и получателем (приёмником сообщений) служат: оконечные аппараты - передающий и приёмный; канал связи, образуемый с помощью одной или неск. включённых последовательно систем передачи; кроме того, вследствие наличия большого кол-ва оконечных передающих и приёмных аппаратов и необходимости их всевозможных попарных соединений для opr-ции непрерывного (сквозного) канала между ними, используется система коммутац. устройств, состоящая из одной или неск. коммутац. станций и узлов.

Оконечные аппараты. Оконечный передающий аппарат служит для преобразования сигнала исходной формы (звуков речи; знаков текста телеграмм; знаков, записанных в закодированном виде на перфоленте или к.-л. др. носителе информации; изображений объектов и т. д.) в электрич. сигнал. В телеф. связи и радиовещании для электроакустич. преобразований применяют микрофон. В телегр. связи кодовые комбинации знаков текста телеграмм преобразуют в серии электрич. импульсов; такое преобразование осуществляется либо непосредственно (при использовании стартстопного телеграфного аппарата), либо с предварит, записью знаков на перфоленту (при использовании трансмиттера). В факсимильной связи преобразование светового потока переменной яркости, отражённого от оригинала, в электрич. импульсы производится факсимильным аппаратом, Информацию о распределении светотеней к.-л. объекта телевиз. передачи преобразуют в видеосигнал при помощи телевизионной передающей камеры (телекамеры).

Оконечный приёмный аппарат служит для приведения принимаемых электрич. сигналов к форме, удобной для их восприятия приёмником сообщений. При Э. мн. видов оконечные аппараты содержат как передающие, так и приёмные устройства. В первую очередь это относится к такой Э., к-рая обеспечивает двухсторонний (обычно дуплексный; см. Дуплексная связь) обмен сообщениями. Так, телефонный аппарат, как правило, содержит микрофон и телефон, объединённые в одном конструктивном узле - микротелефонной трубке. В радиовещании и телевиз. вещании передающие и приёмные оконечные аппараты разделены, причём сигналы от одного передающего устройства принимаются сразу мн. оконечными аппаратами - радиоприёмниками и телевизорами.

Канал связи; многоканальные системы передачи. Канал связи (канал электросвязи) - технич. устройства и физ. среда, в к-рых электрич. сигналы распространяются от передатчика к приёмнику. Технич. устройства (модуляторы, демодуляторы, усилители электрических колебаний, кодирующие устройства, дешифраторы и т. д.) размещают в оконечных и промежуточных пунктах линий связи (кабельных, радиорелейных и т. д.). Система передачи информации - каналообразующая аппаратура и др. устройства, обеспечивающие в совокупности образование множества каналов связи в одной линии связи (см. также Линии связи уплотнение).

Используемые в Э. каналы связи подразделяются на аналоговые и дискретные. Аналоговые каналы служат для передачи непрерывных электрич. сигналов (примеры таких сигналов: напряжения и токи, получающиеся при электроакустич. преобразованиях звуков речи, музыки, при развёртке изображений). Возможность передачи через данный канал связи непрерывных сигналов от того или иного источника обусловлена прежде всего такими характеристиками канала, как полоса пропускания частот и допустимая макс, мощность передаваемых сигналов. Кроме того, поскольку любой канал подвержен различного рода помехам (см. Помехи в проводной связи, Помехи радиоприёму, Помехоустойчивость), то он характеризуется также минимальной мощностью электрич. сигнала, к-рая должна в заданное число раз превышать мощность помех. Отношение макс, мощности сигналов, пропускаемых каналом, к минимальной наз. динамическим диапазоном канала связи.

Дискретные каналы служат для передачи импульсных сигналов. Такие каналы обычно характеризуются скоростью передачи информации (измеряемой в бит/сек) и верностью передачи. Дискретные каналы могут быть также использованы для передачи аналоговых сигналов и, наоборот, аналоговые каналы - для передачи импульсных сигналов. Для этого сигналы преобразуются; аналоговые в импульсные с помощью аналого-дискретных (цифровых) преобразователей, а импульсные в аналоговые с помощью дискретно(цифро)-аналоговых преобразователей. На рис. 1 показаны возможные способы сочетания источников аналоговых и дискретных сигналов с аналоговыми и дискретными каналами связи.

Используемые в Э. системы передачи обычно обеспечивают одновременную и независимую передачу сообщений от мн. источников к такому же числу приёмников. В таких системах многоканальной связи общая линия связи уплотняется неск. десятками - неск. тыс. индивидуальных каналов. Наибольшее распространение (1978) получили многоканальные системы с частотным разделением аналоговых каналов. При построении таких систем передачи каждому каналу связи отводится определённый участок области частот в полосе пропускания линейного тракта передачи, общего для всех передаваемых сообщений (см. рис., том 16, стр. 368, внизу). Для переноса спектра сигнала в участок, отведённый ему в полосе частот группового тракта (частотного преобразования сигнала), используют амплитудную или частотную модуляцию (см. также Модуляция колебаний) групп "несущих" синусоидальных токов. При амплитудной модуляции (AM) в соответствии с передаваемым сообщением изменяется амплитуда гармонич. колебаний тока несущей частоты. В результате на выходе модулирующего устройства (модулятора) создаются колебания, в спектре к-рых кроме составляющей несущей частоты (несущей) имеются две боковые полосы. Поскольку каждая из боковых полос содержит полную информацию об исходном (модулирующем) сигнале, то в линию связи пропускают только одну из них, а другую и несущую подавляют с помощью полосно-пропускающих электрических фильтров или иных устройств (см. Однополосная модуляция, Однополосная связь). При частотной модуляции (ЧМ) в соответствии с передаваемым сообщением изменяется несущая частота. Системы с ЧМ обладают большей по сравнению с системами с AM помехоустойчивостью, однакоэто преимущество реализуется лишь при достаточно большой девиации частоты, для чего необходима широкая полоса частот. Поэтому, напр., в радиосистемах ЧМ применяют гл. обр. в диапазоне метровых (и более коротких) волн, где на каждый индивидуальный канал приходится полоса частот, в 10-15 раз большая, чем в системах с AM, работающих на более длинных волнах. В радиорелейных линиях нередко используют сочетание AM с ЧМ; с помощью AM создаётся нек-рый промежуточный спектр, к-рый затем переводится в линейный диапазон частот с помощью ЧМ.

Для передачи сообщений различного вида требуются каналы с определённой шириной полосы пропускания. Характерная особенность совр. системы передачи - возможность организации в одной и той же системе каналов, применяемых для различных видов Э. При этом в качестве стандартного канала используется телефонный канал, наз. каналом тональной частоты (ТЧ). Он занимает полосу частот 300-3400 гц. Для упрощения фильтрующих устройств, разделяющих соседние каналы, каналы ТЧ отделяются друг от друга защитными частотными интервалами и занимают (с учётом этих интервалов) полосу 4 кгц. Кроме передачи сигналов речи, каналы ТЧ используются также в факсимильной связи, низкоскоростной передаче данных (от 600 до 9600 бит/сек) и нек-рых др. видах Э. Учитывая большой удельный вес каналов ТЧ в сетях Э., их принимают за основу при создании как широкополосных (> 4 кгц), так и узкополосных (<4 кгц) каналов. Напр., в радиовещании применяется канал с полосой, втрое (иногда вчетверо) превышающей полосу канала ТЧ; для высокоскоростной передачи данных между ЭВМ, передачи изображений газетных полос и др. употребляются каналы, в 12, 60 и даже 300 раз более широкие; сигналы программ телевиз. вещания передаются через каналы с полосой, в 1600 раз превышающей полосу канала ТЧ (что составляет примерно 6 Мгц). На базе канала ТЧ (посредством его т. н. вторичного уплотнения) создаются каналы для телеграфирования с полосами пропускания 80, 160 или 320 гц, со скоростями передачи (соответственно) 50, 100 или 200 бит/сек. Линии радиорелейной связи позволяют создать 300, 720, 1920 каналов ТЧ (в каждой паре высокочастотных стволов); линии связи через- ИСЗ - от 400 до 1000 и более (в каждой паре стволов). Проводные линии связи, используемые в системах передачи с частотным разделением каналов, характеризуются след, числом каналов ТЧ: симметричные кабели 60 (в расчёте на две пары проводов); коаксиальные кабели - 1920, 3600 или 10 800 (на каждую пару коаксиальных трубок). Возможно создание систем с ещё большим числом каналов.

С целью увеличения дальности связи посредством уменьшения влияния шумов (накапливаемых по мере прохождения сигнала в линии) в проводных системах передачи с частотным разделением каналов используют усилители, общие для всех сигналов, передаваемых в каждом линейном тракте, и включаемые на определённом расстоянии друг от друга. Расстояние между усилителями зависит от числа каналов: для мощных проводных систем (10 800 каналов) оно составляет 1,5 км, для маломощных (60 каналов) - 18 км. В системах радиорелейной связи сооружают ретрансляционные станции в среднем на расстоянии 50 км одна от другой.

Наряду с системами передачи с частотным разделением каналов с 70-х гг. 20 в. началось внедрение систем, в к-рых каналы разделяются во времени на основе методов импульсно-кодовой модуляции (ИКМ), дельта-модуляции и др. При ИКМ каждый из передаваемых аналоговых сигналов преобразуется в последовательность импульсов, образующих определённые кодовые группы (см. Код, Кодирование). Для этого в сигнале через заданные промежутки времени (равные половине "периода, соответствующего макс, частоте изменения сигнала) вырезаются узкие импульсы (рис. 2,а). Число, характеризующее высоту каждого вырезанного импульса, передаётся 8-значным кодом за время, не превышающее протяжённость (ширину) импульса (рис. 2,6). В промежутках времени между передачей кодовых групп данного сообщения линия свободна и может быть использована для передачи кодовых групп др. сообщений. На приёмном конце линии производится обратное преобразование кодовых комбинаций в последовательность импульсов различной высоты (рис. 2,в), из к-рых с определённой степенью точности может быть восстановлен исходный аналоговый сигнал (рис. 2,г). При дельта-модуляции аналоговый сигнал сначала преобразуется в ступенчатую функцию (рис. 3,а), причём кол-во ступенек на период, соответствующий макс, частоте изменения сигнала, в различных системах составляет 8-16. Передаваемая в линию последовательность импульсов отображает ход ступенчатой функции в изменении знака производной сигнала: возрастающие участки аналоговой функции (характеризующиеся положительной производной) отображаются положит, импульсами, спадающие участки (с отрицат. производной) - отрицательными (рис. 3,6). В промежутках между этими импульсами располагаются импульсы, образованные от др. сигналов. При приёме импульсы каждого сигнала выделяются и интегрируются, в результате с заданной степенью точности восстанавливается исходный аналоговый сигнал (рис. 3,в).

Каналы ИКМ и дельта-модуляции (без оконечных аналого-цифровых преобразующих устройств) - дискретные и часто используются непосредственно для передачи дискретных сигналов. Осн. достоинством систем с временным разделением каналов является отсутствие накопления шумов в линии; искажение формы сигналов при их прохождении устраняется с помощью регенераторов, устанавливаемых на определённом расстоянии друг от друга (аналогично усилителям в системах с частотным разделением). Однако в системах с временным разделением существует шум 4 квантования", возникающий при преобразовании аналогового сигнала в последовательность кодовых чисел, характеризующих этот сигнал лишь с точностью до единицы. Шум "квантования", в отличие от обычного шума, не накапливается по мере прохождения сигнала в линии.

К сер. 70-х гг. разработаны системы с ИКМ на 30, 120 и 480 каналов; находятся в стадии разработки системы на неск. тыс. каналов. Развитие систем передачи с разделением каналов во времени стимулируется тем, что в них широко используют элементы и узлы ЭВМ, и это в конечном счёте приводит к удешевлению таких систем как в проводной связи, так и радиосвязи. Весьма перспективны импульсные системы передачи на основе находящихся в стадии разработки волноводных и световодных линий связи (число каналов ТЧ может достигать 10 5 в волноводной трубе диаметром примерно 60 мм или в паре стеклянных световодных нитей диаметром 30-70 мкм).

Системы коммутационных устройств. Применяемые в Э. системы коммутац. устройств бывают двух типов: узлы и станции коммутации каналов (КК), позволяющие при конечном числе каналов создавать временное прямое соединение через канал связи любого источника с любым приёмником (после окончания переговоров соединение разрывается, а освободившийся канал используется для орг-ции др. соединения); узлы и станции коммутации сообщений (КС), используемые в Э. тех видов, в к-рых допустима задержка (накопление) передаваемых сообщений во времени. Задержка бывает необходима при невозможности их немедленной передачи вызываемому абоненту из-за отсутствия в данный момент свободного канала либо занятости вызываемой абонентской установки. Узлы и станции КК, применяемые в Э. наиболее массовых видов - телефонной и телеграфной,- представляют собой телефонные станции или телеграфные станции, а также телеф. или телегр. узлы связи, размещаемые в определённых пунктах телефонной сети или телеграфной сети. Станции и узлы КК различаются в зависимости от выполняемых ими функций и их расположения в сети. Напр., в телеф. сети существуют такие автоматич. телеф. станции (АТС), как сельские, городские, междугородные, а также различные коммутационные узлы: узлы автоматической коммутации, узлы входящих и исходящих сообщений и другие. Характерной особенностью узлов является то, что они связывают между собой различные АТС. Любая совр. станция или узел КК содержит комплекс управляющих устройств, построенных на базе электромеханич. или электронных приборов, и коммутац. устройств, к-рые под воздействием сигналов управления осуществляют соединение или разъединение соответствующих каналов (рис. 4). В наиболее распространённых (1978) системах КК устройства управления строятся на основе электромеханич. реле, а коммутац. устройства - на основе многократных координатных соединителей. Такие станции и узлы наз. координатными.

Системы КС используются преим. в телеграфной связи и при передаче данных. Дополнительно к управляющим и коммутирующим устройствам в системах КС имеются устройства для накопления передаваемых сигналов. В процессе прохождения сигналов от передатчика к приёмнику в системах КС осуществляются такие технологич. операции с накапливаемыми сообщениями, как изменение порядка их следования к абонентам (с учётом возможных приоритетов, т. е. преимущественного права на передачу), приём сообщений по каналу одного типа (характеризующемуся одной скоростью передачи), а передача - по каналу др. типа (с др. скоростью) и ряд дополнит, операций в соответствии с заданным алгоритмом работы. В нек-рых случаях могут создаваться комбинированные узлы КС и КК, позволяющие обеспечить наиболее благоприятные режимы передачи сообщений и использования сетей Э.

Для развития совр. коммутац. станций и узлов характерны тенденции использования в коммутац. устройствах быстродействующих миниатюрных герметизированных контактов (напр., герконов) для реализации соединений, а для управления процессами соединений - специализированных ЭВМ. Коммутац. станции и узлы такого типа получили название квазиэлектронных. Введение ЭВМ позволяет предоставлять абонентам дополнит, услуги: возможность применения сокращённого (с меньшим кол-вом знаков) набора номеров наиболее часто вызываемых абонентов; установку аппаратов на "ожидание", если номер вызываемого абонента занят; переключение соединения с одного аппарата на другой и т. д. С внедрением систем передачи с временным разделением каналов намечается возможность перехода к чисто электронным (без механич. контактов) станциям и узлам коммутации. В таких системах коммутируются непосредственно дискретные каналы (без преобразования дискретных сигналов в аналоговые). В результате происходит объединение (интеграция) процессов передачи и коммутации, что служит предпосылкой к созданию интегральной сети связи, в к-рой сообщения всех видов передаются и коммутируются едиными методами. В СССР Э. развивается в рамках разработанной и планомерно внедряемой Единой автоматизированной сети связи (ЕАСС). ЕАСС представляет собой комплекс технич. средств связи, взаимодействующих посредством использования общей - "первичной" - сети каналов, на основе к-рой с помощью коммутац. станций и узлов и оконечных аппаратов создаются различные "вторичные" сети, обеспечивающие орг-цию Э. всех видов.

Лит.: Чистяков Н. И., X л ы т ч и е в С. М., Малочинскнй О. М., Радиосвязь и вещание, 2 изд., М., 1968; Многоканальная связь, под ред. И. А. Аболица, М., 1971; Автоматическая коммутация и телефония, под ред. Г. Б. Метельского, ч. 1-2, М., 1968-69; Емельянов Г. А.,

Шварцман В. О., Передача дискретной информации и основы телеграфии, М., 1973; Румпф К.-Г., Барабаны, телефон, транзисторы, пер. с нем., М., 1974; Лившиц Б. С., Мамонтова Н. П., Развитие систем автоматической коммутации каналов, М., 1976; Давыдов Г. Б., Р ог и н с к и и В. Н., Т о л ч а н А. Я., Сети электросвязи, М., 1977; Давыдов Г. Б., Электросвязь и научно-технический прогресс‘ М., 1978. Г. Б. Давыдов.

В. О. Шварцман

Развитие электросвязи началось более 160 лет назад – с момента появления телеграфной связи. Сейчас насчитывается 11 видов электросвязи.

Как видно из таблицы, подавляющее большинство видов электросвязи (10 из 11) предназначено для человека – как отправителя, так и получателя информации. Только передача данных используется для обмена информацией между ЭВМ и между человеком и ЭВМ.

При рассмотрении таблицы возникает ряд вопросов:

4. Можно ли с помощью средств электросвязи предоставлять услуги, выходящие за рамки непосредственного общения людей?

Для ответа на эти вопросы воспользуемся результатами , свидетельствующими о информационных возможностях некоторых видов электросвязи.

Общеизвестно, что появление электросвязи дало возможность человеку передавать различную информацию на значительно большие расстояния, чем при непосредственном общении. Но помимо этого, средства связи имеют различные информационные возможности (см. таблицу).

А теперь попробуем ответить на поставленные выше вопросы.

Вид электросвязи Передаваемая информация Получаемая информация (%) по сравнению с непосредственным общением (принято за 100%) Характер передачи
Телеграфная Буквенно-цифровая (текстовая) 7
Телефонная Речь 45 "Точка – точка"
Факсимильная Неподвижные изображения - "Точка – точка", циркулярная, многоадресная
Звуковое вещание Музыка, пение, речь - "Точка – много точек"
Телевизионное вещание Музыка, пение, речь, подвижные изображения 95 "Точка – много точек"
Передача данных Буквенно-цифровая - "Точка – точка", циркулярная, многоадресная
Телерукопись Чертежи, схемы - "Точка – точка"
Видеотелефон Речь, подвижные изображения (медленно меняющиеся) - "Точка – точка"
Аудиоконференции Речь и текст 50 "Много точек – много точек"
Видеоконференции Речь, неподвижные и подвижные изображения 95 "Много точек – много точек"
Обработка сообщений Текстовая, неподвижные изображения, преобразование формы представления информации - "Точка – точка", циркулярная, многоадресная

1. Почему развитие электросвязи началось с телеграфии?

По-видимому, причин тому несколько.

  1. Закономерность развития. Как вид электрической связи телеграфия имела большую предысторию – от оптического и звукового телеграфа (сигнализация кострами и семафором, барабанный бой и т. п.) до электрохимического и элементарного электромагнитного.
  2. Историческая обусловленность. Поскольку развитие техники определяется состоянием соответствующих направлений науки и практики, то в первой трети прошлого столетия появились предпосылки для создания электромагнитного телеграфа.
  3. Технические возможности. Для передачи сообщений на расстояние проще всего использовать электрический ток путем его включения и выключения на передаче, а также притяжение магнитной стрелки электромагнитом, включенным на приеме.

2. Что является движущей силой появления новых видов электросвязи?

Как следует из таблицы, с появлением новых видов электросвязи объем информации, получаемой с их помощью, приближается к объему информации, получаемой при непосредственном общении людей. Поэтому как только появились возможности для превращения звуковых колебаний, создаваемых речью человека, в электрические сигналы и обратного их преобразования на приеме, возникла (примерно через 40 лет после телеграфии) телефония, резко увеличившая объем передаваемой информации по сравнению с непосредственным общением (с 7 до 45 %).

После этого была организована факсимильная связь, которая значительно расширила возможности человека при передаче не только текстовых и звуковых сообщений, но и чертежей, рисунков, фотографий.

Появление этого вида связи стало возможным после реализации идеи последовательной передачи изображений по элементам и разработки способов и устройств, способных преобразовать неподвижные изображения в электрические сигналы.

В качестве преобразователей на передаче были использованы фотоэлементы, а на приеме – электросветовые (с записью на фотобумагу), электрохимические (с записью на бумагу, покрытую специальным составом, реагирующим на силу тока), электростатические (с записью на специальную бумагу, реагирующую на величину электрического заряда) и другие методы. Однако больше половины информации (см. таблицу), получаемой человеком с помощью органов зрения, не могло быть передано с помощью средств связи, пока не были решены задачи превращения подвижных изображений в электрические сигналы и обратно. Так в результате изобретения электроннолучевых трубок – иконоскопа (передающей) и кинескопа (приемной) – появилось телевидение.

Этим завершился один из очень важных этапов приближения информационных возможностей средств электросвязи к возможностям непосредственного обмена информацией между людьми. Этот этап охватывает все виды сообщений, которые передаются и принимаются органами зрения, слуха, движения, мимики и жестов.

Осталась неохваченной только информация, получаемая и выдаваемая человеком с помощью органов осязания и обоняния. Но эта часть информации сравнительно невелика, и есть все основания полагать, что со временем ее можно будет передавать с помощью средств электросвязи. Некоторые достижения в этом направлении уже имеются. В парфюмерной промышленности, например, испытывают "электронный нос" (устройство для оценки запахов духов), а в пищевой промышленности – "электронный рот" (устройство для дегустации вин). Поэтому есть надежда, что со временем связь обеспечит 100 %-ную передачу информации, получаемой при непосредственном взаимодействии людей между собой и с окружающим миром.

Исходя из сказанного, можно сделать вывод о том, что движущей силой появления и развития новых видов электросвязи является стремление максимально приблизить информативность электросвязи к условиям непосредственного общения.

Подытоживая данные рассуждения, можно констатировать, что развитие электросвязи началось с низкоскоростной передачи текстовых сообщений (телеграфия), затем появилась телефонная связь, требующая больших скоростей передачи, после этого – передача неподвижных изображений (факсимильная связь), звуковое (аудио) вещание, видеовещание (телевидение), видеотелеконференции на основе применения технологий мультимедиа с эффектом виртуальной реальности, причем для каждого следующего вида связи требовались более высокие скорости передачи. Таким образом, просматривается очевидная тенденция – по мере появления новых видов электросвязи повышается скорость передачи информации. Эта тенденция подтверждается и экономическими соображениями.

3. Каковы перспективы дальнейшего развития видов электросвязи?

На основе изложенного может возникнуть вопрос, не остановится ли на этом развитие связи? Нет, не только не остановится, но даже не замедлится, и, более того, будет происходить более быстрыми темпами. И вот почему.

Во-первых, мы рассмотрели только последовательность создания новых видов связи, но совершенно не затронули вопросов развития предоставляемых с их помощью услуг. А ведь совершенно очевидно, что низкое качество услуг может свести к нулю информативность любого вида связи. Поэтому одним из основных направлений развития электросвязи остается увеличение числа услуг и повышение их качества.

Этот процесс будет происходить на основе новых технологий: интегральные и интеллектуальные сети, сети персональной и подвижной связи, мультимедиа, новые направляющие системы и методы передачи, сжатие информации и др. Но при этом телефония останется телефонией, как бы ее ни называли (например, компьютерная телефония, телефонная почта), а передача данных – передачей данных и т. д.

Одновременно с этим необходимо будет решить вопросы, связанные со снижением себестоимости и тарифов на услуги связи.

Решение этих задач в значительной степени зависит от развития электроники и вычислительной техники. При этом при оценке качества всех видов связи используются те же параметры, что и для оценки качества передачи информации при непосредственном общении, а основным требованием является максимальное приближение качества услуг связи к качеству передачи при непосредственном общении. Правда, в первом случае добавляются еще и требования к доставке по адресу и времени передачи.

Во-вторых, все вышеизложенное относится только к передаче информации в системе "точка – точка" (между двумя людьми). Однако человек может одновременно общаться не с одним человеком, а с многими людьми (система "точка – много точек"). Общение может происходить также по схеме "много точек – много точек" (имеется в виду масса людей).

И, наконец, в-третьих, мы ограничились рассмотрением только тех случаев, когда источником и потребителем информации является человек, тогда как сейчас в этом качестве широко и все чаще выступает ЭВМ. Более того, системы телеобработки и телематические службы будут все активнее использовать услуги электросвязи и в первую очередь услуги, базирующиеся на новых технологиях.

Отметим только, что услуги при связи ЭВМ – ЭВМ и человек – ЭВМ все более совершенствуются и по качеству приближаются к услугам непосредственного общения, например, услуга аутентификации отправителя и получателя, договоренность о методе работы (симплекс – дуплекс), о возможности приема сообщения определенного размера, конфиденциальность.

4. Может ли электросвязь предоставить услуги, выходящие за рамки непосредственного общения людей?

При ответе на этот вопрос речь будет идти только о тех услугах электросвязи, которые отсутствуют при непосредственном общении людей или имеют при нем более низкое качество.

Рассмотрим такую услугу, как передача с переприемом и хранением. Данная услуга удобна в условиях, когда отправитель и получатель находятся в местах с разным поясным временем или когда передать информацию раньше нельзя или неудобно, а позже не представляется возможным. Такие услуги предоставляются службами обработки сообщений (электронной почты), компьютерной телефонии и другими службами электросвязи.

Может возникнуть и другая ситуация: пользователь желает сохранить конфиденциальность получения информации. При непосредственной встрече с этим лицом уклониться от его намерений бывает очень трудно, тогда как служба компьютерной телефонии предоставляет такую возможность: при получении телефонного вызова абонент до снятия трубки нажатием специальной кнопки на аппарате получает на дисплее не только номер вызывающего абонента, но и его фотографию. На основании этих сведений он решает, снимать трубку или имитировать свое отсутствие. В более простых системах телефонной связи на экране аппарата высвечивается номер вызывающего телефона.

Существует и такая услуга, как "замкнутая группа абонентов", которую предоставляет служба обработки сообщений. Ее реализация в условиях непосредственного общения в большей массе людей весьма проблематична.

В местах собрания большого количества людей (в пределах непосредственной слышимости и видимости, когда обходятся без средств связи) может иметь место обмен разными видами информации (речь, текст, неподвижные и подвижные изображения).

Такие системы связи, как аудио- и видеоконференции, не только полностью обеспечивают дистанционный обмен всеми перечисленными видами информации, но и создают дополнительные возможности, в частности, передачу некоторой информации только определенной группе участников.

Большие возможности связи по сравнению с непосредственным общением человека с человеком или человека с ЭВМ не должно удивлять. Мы уже привыкли к тому, что микроскоп, телескоп, автомобиль, самолет и т. п. расширяют наши возможности.

Литература

  1. Шварцман В. О. Электросвязь и информатизация // Электросвязь. – 1997. – № 5.