Простое фотореле из компьютерной мыши. Устройство и принцип работы оптической мыши Датчик пыли из оптической мышки

Простое фотореле из компьютерной мыши. Устройство и принцип работы оптической мыши Датчик пыли из оптической мышки
Простое фотореле из компьютерной мыши. Устройство и принцип работы оптической мыши Датчик пыли из оптической мышки

Если у Вас сломалась компьютерная мышка, не спешите покупать новую. Вполне возможно, что Вы самостоятельно сможете починить поломку и устройство прослужит Вам ещё не один год.

Барахлит сенсор мыши

Часто случается также ситуация, когда мы не можем точно навести курсор на определённую точку. Он постоянно дрожит и перемещается сам собой. Такая ситуация явно указывает на засорение оптической группы мышки.

Засорение чаще всего бывает внешним. В отсек, где свет диода отражается от стола, попадает пыль или волосы. Чтобы избавиться от такого засорения не нужно даже разбирать мышку. Достаточно перевернуть её и продуть. В крайнем разе, воспользоваться небольшой кисточкой, чтобы удалить прилипший мусор.

Если же и после таких манипуляций курсор мышки дрожит, то, вероятнее всего, что либо сенсор засорился внутри, либо вовсе вышел из строя. В любом случае можно попробовать разобрать мышку и почистить сенсор при помощи зубочистки с намотанной на неё ваткой пропитанной спиртом:

Перед тем как чистить сенсор ваткой, можно также попробовать продуть его, чтобы выдуть мелкодисперсионную пыль, которая может прилипнуть после намокания. После этого аккуратно без нажима вводите зубочистку вращательными движениями в отверстие сенсора. Сделав пару проворотов и не прекращая вращать, вытаскиваем зубочистку, дожидаемся высыхания спирта и пробуем подключить мышь.

Если и после всех попыток очистки сенсор нормально не работает, то при наличии другой мышки, паяльника и прямых рук, можно выпаять нерабочую микросхему и заменить её датчиком от другой мышки. Однако, это уже требует определённой сноровки, поэтому не все смогут провернуть такое...

Прокручивается колёсико мышки

Бывает так, что мышка работает нормально, но при попытке воспользоваться её колёсиком, страница, которую мы прокручиваем, начинает прыгать то вверх, то вниз, либо вообще не желает скроллиться. Увы, выход колеса мыши из строя - довольно частая поломка и именно она побудила меня к написанию данной статьи.

Для начала нужно внимательно рассмотреть, насколько равномерно колесо крутится в пазе. Сам паз и ось колеса имеют шестиугольное сечение, но иногда одна или несколько сторон этого шестиугольника может деформироваться, в результате чего будет наблюдаться проскальзывание оси в проблемном месте.

Если у Вас именно такая проблема, то она решается за счёт уплотнения края оси колеса скотчем или изолентой в небольших количествах. Если же с движением колёсика всё нормально, то поломка произошла внутри энкодера (датчика прокрутки). От длительного использования он мог разболтаться и его следует немного уплотнить:

Для этого возьмите небольшие плоскогубцы и по очереди прижмите ими четыре металлические скобы, которыми энкодер крепится к пластмассовым деталям механизма прокрутки. Здесь главное не переусердствовать и не сломать хрупкий пластик, но в то же время поджать посильнее. Пробуйте подключать мышь и проверять, уменьшился ли негативный эффект при прокрутке после каждого поджатия.

Увы, в моём случае полностью избавиться от рывков не удалось. Да, частота и разброс в скачках страницы уменьшились, но сами скачки полностью не исчезли. Тогда я решил подойти к вопросу уплотнения радикально и истинно по-русски:) Вырезал из старой упаковки от батареек кусочек тонкого но плотного полиэтилена и воткнул внутрь механизма:

Что самое интересное, данная манипуляция помогла! Мне осталось только обрезать лишнюю длину полоски и собрать мышь:)

Не работают кнопки мыши

Последняя, и самая досадная, поломка - это нерабочая кнопка. Левая ли, правая или та, что под колёсиком не важно - они все обычно одинаковы. Важно то, что нерабочая кнопка практически никак не чинится. Можно только заменить её микропереключатель, выпаяв паяльником нерабочий и поставив на его место новый или позаимствованный из другой мышки.

Микропереключатель имеет три "ножки", первая из которых - обычный фиксатор, а две остальные - контакты, которые и требуется паять. Фиксатор припаивать не нужно. Он служит только в качестве "защиты от дурака" , чтобы Вы по ошибке не вставили микропереключатель не той стороной.

Иногда кнопка ещё работает, но срабатывает не при каждом нажатии. Такой симптом может сигнализировать о том, что от частого использования стерся край толкателя кнопки, который нажимает микропереключатель.

Разбираем мышь и внимательно изучаем проблемную кнопку и её толкатель. Если видим небольшую вмятинку, то проблема может быть именно в ней. Достаточно залить промятое место капелькой эпоксидной смолы или расплавленной пластмассы.

Последняя проблема с которой Вы можете столкнуться - кнопка мыши делает двойной клик при нажатии на неё. Решить это дело можно перепайкой микропереключателя или... программно! В любом случае перед тем как браться за паяльник проверьте правильность настроек мышки в Панели управления Windows:

По стандарту полозок скорости двойного щелчка должен находиться по центру, а опция залипания кнопок мыши - отключена. Попробуйте выставить такие параметры и проверьте, решилась ли проблема. Если нет, ещё один радикальный программный способ "лечения" двойного клика - удаление драйвера мыши. Как правильно удалить драйвер написано .

Выводы

Мышки - одни из наиболее активно используемых устройств компьютера. Поэтому неудивительно, что они часто выходят из строя. Однако, благодаря простоте их устройства, починить мышку в большинстве случаев может каждый!

Для этого необязательно уметь паять или разбираться в электронике. Главное чётко диагностировать причину поломки. Здесь, как в медицине, правильный диагноз - путь к успешному ремонту.

Надеюсь, наша статья позволит Вам определить, что именно сломалось в Вашей мышке, а значит, и починить поломку. Успешного Вам ремонта!

P.S. Разрешается свободно копировать и цитировать данную статью при условии указания открытой активной ссылки на источник и сохранения авторства Руслана Тертышного.

Задача: быстро сделать датчик линейного перемещения из компьютерной мышки.

В обычных мышках прячется высокочувствительный оптический датчик. Там скрывается своя маленькая «камера» и процессор обработки, который отслеживает передвижения малейших точек на поверхности. В топовых мышках разрешающая способность составляет всего 3 мкм!

С какими подмышиными камнями мы столкнулись, плюс техническая часть, расскажем дальше!

Следующее ТЗ дал заказчик: сделать как можно скорее, с любой мышкой (возможно беспроводной), выводить на 7 сегментный индикатор, обнулять по кнопке, компьютер не подходит, нужна разрешающая способность 0.01 мм, максимальное расстояние 1000 мм.

Для начала как все это делалось:

Считывание координат xy с мышки: Реализовать считывание данных можно несколькими способами: а) Непосредственно с микросхемы оптического сенсора + Можно обойтись простым контроллером - Про универсальность можно забыть совсем б) Подключить мышку по USB к простым контроллерам (например к ардуино) + Простота и дешивизна - Надо паять - Под рукой была только arduino, а к ней можно подключить мышки совместимые с PS/2, а они обычно очень неточные. Можно было на stm32, но отладочные платы сильно подорожали, самому паять не было времени. (но если интересно, то несколько лет назад был такой похожий проект именно на stm32f4discovery) в) Взять какой нибудь простой одно платный компьютер. Под рукой был как раз Raspberri pi. + Подходит для любых USB мышек + Хорошая производительность - Дорого, но может избыточная мощность потребуется потом
В итоге, под нож хирурга легла Малина пи 3. Четыре 64 битных ядра A-53 по 1GHz, 512 МБ оперативки и много других космических для этой задачи циферок.

Задачка: Индикация должна быть на выданных 7-сегментных индикаторах. Получается нам необходимо по 6 цифр на одну координату, итого 12 индикаторов. Каждый индикатор имеет 7 ножек на цифры+ ножка на светодиод точки (dp), общий провод не считаем. Итого после простых расчетов получаем, что мы должны управлять 96 проводниками плюс нужна кнопка. 96 резисторов не очень хотелось тратить.

Послушайте!
Ведь, если светодиод зажигают - значит - это нужно один резистор?

Управлять сразу таким массивом ножек нету возможности. Выход есть! И даже несколько!

1) Использовать дополнительные микросхемы по типу max7219, или сдвиговые регистры, мультплексоры, и т.д.

Можно почти бесконечно наращивать количество индикаторов
- Max7219 оказалась с рабочим напряжением 5 В
- Не было под рукой ничего подходящего.

2) Можно сделать динамическую индикацию. В один момент времени зажигать только один светодиодный индикатор. Если индикаторы переключать очень быстро, то человеческий глаз не заметит подставы.
+ Нужно только 8 проводов и резисторов на один индикатор и 12 на переключение индикаторов. Плюс не забываем кнопку. Итого: всего 21 ножка против 96. Берем!
- Так как мы пытаемся управлять целым индикатором через один пин распберри, то максимальный ток у нас ограничен 50 мА. Всегда берем запас, и берем 35 мА на все 8 светодиодов (что не шибко). Еще к этому добавим быстрое переключение индикаторов. В итоге у нас каждый светит в 12 раз меньше положенного. Доработать можно 12 транзисторами, но оставил я это на потом, т.к. яркости в конечном счете хватило.

Теперь начинается софт:

На распберри пи надо поставить linux. Я поставил минимальный дистрибутив
RASPBIAN JESSIE LITE .

Далее через программу putty подключился к IP малинки, и дальше все через командную строку.
Чтобы было проще работать с GPIO(портами ввода и вывода) есть замечательная библиотека WiringPi .

Как устанавливать её и управлять портами, вы сможете найти много информации в сети, поэтому не буду подробно останавливать на этом.

Cd /home/pi sudo mkdir mouse cd /home/pi/mouse
Дальше открываем редактор и вставляем код с гита. ВАЖНО! Код писал на очень скорую руку!

Sudo nano
для выхода из редактора надо нажать Alt+x и сохранить файл с названием blinker.c. Дальше надо обязательно скомпилировать с указанием wiring pi:

Gcc -o mouse mouse.c -l wiringPi
Все! Теперь подключаем мышку, вставляем провода и запускаем!

Подключение проводов


// pin number declarations. We"re using the Broadcom chip pin numbers.

Const int p21pin = 2;
const int p22pin = 3;
const int p23pin = 4;
const int p24pin = 17;
const int p25pin = 27;
const int p26pin = 22;
const int p11pin = 10;
const int p12pin = 9;
const int p13pin = 11;
const int p14pin = 5;
const int p15pin = 6;
const int p16pin = 13;
const int papin = 8;
const int pbpin = 23;
const int pcpin = 12;
const int pdpin = 20;
const int pepin = 21;
const int pfpin = 24;
const int pgpin = 18;
const int pdppin = 16;

Const int butpin = 26;


sudo ./mouse
Автозапуск при загрузке:

Sudo nano /etc/rc.local и перед exit 0 дописать две строчки cd /home/pi/mouse sudo ./mouse &
Работать с этой прогой очень просто. по нажатию кнопки мыши или просто кнопки на плате идет обнуление. При долгом нажатии кнопки переходим в режим регулировки DPI. Это важный параметр который задается мышкой и показывает сколько отсчетов мы получим при движении на один дюйм. Соответственно копка на плате и на мышке прибавляет и убавляет DPI. Долго нажимаем, наше значение записалось в файл и надежно хранится до следующей загрузки системы. Для чистоты эксперимента в программе, индикация, получение информации с мышки и кнопка обрабатываются а параллельных процессах.

1. Оси X и Y на моей мышке были не параллельны боковым граням, приходилось для высчитывания реального расстояния пользоваться «пифагоровыми штанами».

2. Разрешающая способность не равно погрешность!

Простым языком - разрешающая способность действительно показывает минимальное перемещение, которое увидит мышка, (отсчеты в компьютере должны быть дискретны минимальной разрешающей способности). А вот что мышка ничего не пропустит, ничем не гарантируется. Можно уменьшить эту величину используя хорошие поверхности (чтобы оптический сенсор мог отслеживать перемещения), использовать небольшие скорости. Но пропуски будут всегда! Для пользователя это означает постоянный уход нуля и непрогнозируемую погрешность измерения.

3. USB HID по которому работает мышь не гарантирует доставку информации в компьютер! То есть неизвестно пропустил ли компьютер какую нибудь информацию с мышки или нет. Вероятность пропажи информации малая, но все же есть.

4. Настройки чувствительности(разрешающей способности) иногда хранятся не в мышке, а в программе для мышки.

5. Тут я сильно зол! Дело в том, что мышку я брал самую крутую из ассортимента Logitech, это самая продвинутая была на тот день модель logitech performance mx. Но какого было мое удивление, когда мышь давала разные погрешности при движении вперед и назад. ЭТО КАК? Поясню для пользователя. Если постоянно двигать мышку назад и вперед, то курсор ощутимо так все снижается и снижается. Это на любых платформах. Приходится периодически поднимать мышку и ставить на новое место. После того, как я заметил это, моя жизнь превратилась в кошмар! #Logitech

В подавляющем большинстве ныне выпускаемых манипуляторов типа «мышь» используются оптические датчики регистрации перемещений. Однако не все они устроены одинаково: в настоящее время получили распространение несколько технологий, каждая из которых имеет свои особенности. Их мы и рассмотрим в данном обзоре.

Массовое внедрение оптических сенсоров в серийно выпускаемых моделях началось в конце 90-х годов и произвело поистине революционные изменения в сфере компьютерных манипуляторов. Поначалу оптические мыши были заметно дороже моделей с катающимся шариком и оптомеханическими датчиками, но, даже несмотря на это, новая конструкция быстро завоевала симпатии пользователей благодаря целому ряду важных достоинств. Во­первых, благодаря отсутствию движущихся частей оптический датчик значительно надежнее оптомеханического и к тому же не нуждается в регулярной чистке. Во­вторых, оптические сенсоры обеспечивают более высокую точность: даже у первых моделей величина этого показателя составляла не менее 400 cpi (counts per inch - отсчетов на дюйм). Если оперировать более привычными единицами измерения, то это означает, что манипулятор способен зафиксировать перемещение всего на 0,06 мм. В-третьих, оптические датчики стабильно работают на самых разных поверхностях. Во многих случаях это позволило отказаться от специальных ковриков, которые были неизменным атрибутом рабочего места пользователя ПК в эпоху мышей с оптомеханическими датчиками.

Напомним принцип работы оптического датчика регистрации перемещений. Независимо от варианта реализации он включает три основных компонента: источник света, миниатюрную видеокамеру и специализированный микропроцессор (DSP). Миниатюрная видеокамера в течение всего одной секунды способна запечатлеть до нескольких тысяч снимков поверхности, по которой перемещается манипулятор. Для получения достаточно контрастных изображений с такой частотой необходимо яркое освещение. Обычно в качестве источника света используется светодиод с фокусирующей линзой или маломощный полупроводниковый лазер. Снятые камерой изображения преобразуются в цифровой вид и непрерывным потоком передаются в DSP, который в режиме реального времени обрабатывает эти данные, рассчитывая направление и скорость перемещения манипулятора.

Миниатюрная видеокамера, АЦП и специализированный процессор объединены в одной микросхеме (рис. 1), благодаря чему мыши с оптическими датчиками отличаются простотой конструкции и могут быть выполнены в очень компактном и легком корпусе (причем не всегда напоминающем привычную мышь - взять, к примеру, надевающуюся на палец модель Genius Ring Mouse, показанную на рис. 2).

Рис. 1. Главный «орган чувств» оптической мыши -
микросхема микропроцессора со встроенной видеокамерой.
Справа от нее находятся светодиод и фокусирующая линза

Рис. 2. Оригинальная мышь
Genius Ring Mouse столь мала,
что ее можно надеть на палец наподобие перстня

Кстати, «недовес» порождает специфическую проблему: чересчур легкий манипулятор может самопроизвольно перемещаться по столу, увлекаемый весом кабеля, служащего для соединения с ПК. Именно поэтому внутри корпуса многих моделей с проводным подключением установлены металлические пластины-утяжелители, а конструкция некоторых игровых мышей позволяет регулировать вес корпуса путем установки съемных кассет с набором калиброванных грузиков. В моделях с беспроводным подключением подобные ухищрения обычно не требуются: роль балласта выполняют батарейки или аккумуляторы, от которых питается мышь.

Технологии, применяемые в оптических датчиках регистрации перемещений, постоянно развиваются. Разработчики многих компаний занимаются усовершенствованием существующих конструкций, а также создают и внедряют принципиально новые решения. Разумеется, в рамках этого обзора мы не будем рассматривать все технические нюансы, в том числе и потому, что многие из них представляют собой ноу­хау производителей и информация о них держится в строжайшем секрете. Впрочем, для наших целей это и не требуется. Чтобы понять принципиальные различия оптических датчиков регистрации перемещения разных конструкций, достаточно обратить внимание на следующие особенности:

  • тип и длину волны используемого источника света;
  • угол наклона излучаемого источником света луча (светового пучка) относительно плоскости рабочей поверхности;
  • угол наклона оптической оси объектива видеокамеры сенсора относительно плоскости рабочей поверхности;
  • и наконец, на то, какой свет попадает в объектив камеры - рассеянный либо отраженный от рабочей поверхности.

На этом завершим вступительную часть и перейдем к рассмотрению различных типов оптических сенсоров, используемых в современных мышах.

«Классическая» оптика

Конструкция оптического датчика регистрации перемещений, который в конце 90-х - начале 2000-х годов пришел на смену оптомеханической системе с катающимся шариком (и, кстати, широко применяется до сих пор), была разработана инженерами компании Agilent Technologies. Схема его устройства показана на рис. 3, а внешний вид - на рис. 4.

Рис. 3. Схема устройства оптического датчика
традиционной конструкции

Рис. 4. Внешний вид оптического сенсора с красным светодиодом.
С левой стороны виден объектив видеокамеры

Рассмотрим отличительные особенности описанного варианта оптического датчика, который для ясности мы далее будем называть оптическим датчиком (или сенсором) традиционной конструкции.

Как видно на приведенной схеме, источником света служит красный светодиод. Поскольку этот полупроводниковый прибор формирует достаточно широкий световой пучок, а освещать требуется небольшую площадь (менее 100 мм 2), то для повышения эффективности использования световой энергии применяется фокусирующая линза. Сфокусированный этой линзой световой пучок освещает рабочую поверхность под довольно острым углом - примерно 25°. Это сделано специально для того, чтобы получать отчетливый свето­теневой рисунок даже на поверхностях с незначительным микрорельефом. Оптическая ось объектива камеры такого сенсора перпендикулярна плоскости рабочей поверхности и, таким образом, считывает рассеянный свет.

Сегодня мыши с оптическими сенсорами традиционной конструкции составляют основу парка компьютерных манипуляторов, причем эксплуатируемых как с настольными, так и с портативными системами. В продаже представлен широчайший ассортимент таких моделей как с проводным, так и с беспроводным подключением, что позволяет без труда подобрать подходящий вариант на любой вкус и кошелек. Благодаря большим объемам производства цена этих устройств значительно снизилась: младшие модели манипуляторов с проводным подключением сейчас можно приобрести всего за 100 руб. И даже такая мышь вполне способна прослужить своему владельцу несколько лет, практически не требуя обслуживания.

Конечно, наряду с упомянутыми выше достоинствами у мышей, оснащенных оптическими сенсорами традиционной конструкции, есть определенные недостатки. В первую очередь это касается «вездеходных» качеств: есть немало поверхностей, на которых они работают нестабильно (при равномерном движении мыши курсор перемещается рывками, а при остановке начинает «плясать»), а на некоторых (таких как прозрачное стекло, зеркало, полированное дерево и т.д.) оптический датчик и вовсе отказывается функционировать.

Лазер вместо светодиода

Важной вехой эволюции оптических мышей стало создание так называемых лазерных сенсоров. Первый лазерный датчик, предназначенный для использования в мыши, был создан сотрудниками компании Agilent Technologies. Если посмотреть на схему его устройства, приведенную на рис. 5, то нетрудно заметить несколько принципиальных отличий его от традиционного оптического.

Рис. 5. Схема устройства лазерного сенсора

Во­первых, как явствует из названия, источником света служит не светодиод, а полупроводниковый лазер. Работает он в невидимом для нашего глаза инфракрасном диапазоне (длина волны - 832-852 нм), так что привычного свечения под корпусом работающего манипулятора в данном случае нет. Чем же лазер лучше светодиода? Основное преимущество лазера заключается в том, что излучаемый им свет имеет когерентную природу - это позволяет получить гораздо более контрастное и детальное изображение поверхности (рис. 6). Во­вторых, значительно (примерно до 45°) увеличен угол падения луча. И в­третьих, оптическая ось объектива видеокамеры расположена под таким же углом, под каким свет от источника падает на рабочую поверхность. Таким образом, видеокамера лазерного сенсора считывает не рассеянный, а отраженный от поверхности свет.

Рис. 6. На гладкой поверхности обычный оптический сенсор
считывает слишком нечеткое изображение (слева). Лазерный сенсор позволяет
получить более контрастную и детальную картинку

Чего же удалось достичь благодаря описанным изменениям? Во­первых, обеспечить стабильную работу датчика на гладких поверхностях, имеющих очень слабо выраженный микрорельеф - то есть там, где оптические датчики традиционной конструкции ведут себя нестабильно или вовсе перестают функционировать. Во­вторых, удалось значительно повысить разрешающую способность сенсора (и соответственно, точность регистрации перемещений).

Увы, не обошлось без побочных эффектов, обусловленных одной из конструктивных особенностей лазерного сенсора, а именно считывания отраженного от рабочей поверхности луча. От поверхности, изготовленной из прозрачного материала (стекла, пластика и т.д.), отражается совсем незначительное количество попавшего на нее света, и в этом случае интенсивности светового потока попросту не хватает для того, чтобы сенсор был способен считать достаточно контрастное изображение. Схожая проблема возникает на неровных поверхностях, в частности на тканях с выраженной фактурой. При попадании на выступ или углубление луч рассеивается либо отражается под другим углом - в обоих случаях в объектив видеокамеры попадает слишком мало света.

При работе на непрозрачных материалах с полированной и глянцевой поверхностью возникает обратная ситуация: отраженного света слишком много и яркие блики «ослепляют» светочувствительный сенсор. Естественно, что в обеих ситуациях стабильная работа датчика становится невозможной.

Первые прототипы манипуляторов с лазерным сенсором конструкции Agilent Technologies были представлены публике в начале 2004 года. В сентябре того же года компания Logitech начала выпуск мыши MX-1000 - первого в мире серийного манипулятора, оснащенного лазерным сенсором.

В середине 2005 года компания Agilent Technologies начала поставки готовых модулей датчиков перемещения на базе сенсоров LaserStream всем заинтересованным производителям, и вскоре лазерные мыши появились в ассортименте многих компаний. Некоторые производители (в частности, Microsoft) пошли собственным путем, самостоятельно разработав лазерные сенсоры для своих манипуляторов. В настоящее время мыши с лазерными сенсорами представлены в линейках многих компаний.

Вопреки ожиданиям производителей, появление мышей с лазерными сенсорами не вызвало большого ажиотажа. Отчасти это объясняется тем, что мыши с оптическими сенсорами традиционной конструкции вполне удовлетворяли потребности большинства пользователей. Кроме того, модели с лазерными датчиками поначалу были значительно дороже, что также не способствовало росту их популярности. В итоге лазерные модели привлекли внимание главных образом ценителей технических новинок и любителей динамичных компьютерных игр.

Лучше, чем лазер

В 2006 году компания A4Tech внедрила усовершенствованный вариант оптического сенсора, который получил название G-laser (сокр. от Greater than laser - лучше, чем лазерный). Обратим внимание на две отличительные особенности такого датчика. Во­первых, это система двойной фокусировки отраженного луча, обеспечивающая стабильную работу сенсора на глянцевых и пестрых поверхностях (ноу­хау компании A4Tech). Во­вторых, для подсветки рабочей поверхности используется не один, а два источника света. Аналогично лазерному сенсору датчик G-laser считывает отраженный от поверхности свет.

В серийно выпускаемых манипуляторах получили распространение два варианта датчика G-laser, различающиеся типом источника света. В одном случае это два светодиода, а в другом - светодиод и полупроводниковый лазер, работающие в инфракрасном диапазоне. Первый вариант датчика G-laser устанавливался в манипуляторах A4Tech серии Х5 (ныне снятых с производства), второй используется и по сей день в моделях A4Tech серии Х6 (одна из них представлена на рис. 7), а также в устройствах ряда других производителей (в частности, Canyon).

На многих типах поверхности манипуляторы с датчиком G-laser действительно работают гораздо стабильнее своих лазерных собратьев, в полной мере оправдывая слоган Greater than laser. В частности, это относится к прозрачному и глянцевому пластику, а также к некоторым видам тканей. Однако и мышам с датчиком G-laser подвластны не все поверхности: на зеркале и чистом прозрачном стекле они не работают.

Рис. 7. A4Tech Glaser Mouse X6-90D - одна из ныне выпускаемых мышей,
оснащенных датчиком G-laser Х6

Важным конкурентным преимуществом моделей с датчиком G-laser является доступная цена: стоимость младших моделей ниже по сравнению с аналогами, оснащенными лазерными сенсорами.

«Синеглазые» мыши, версия Microsoft

В сентябре 2008 года компания Microsoft представила первые серийные модели мышей, оснащенные оптическим сенсором BlueTrack (одна из них показана на рис. 8). Как и в оптическом датчике традиционной конструкции, источником света служит светодиод. Правда, не привычный красный, а модный синий (отсюда, собственно, и название BlueTrack). Теоретически это позволяет получить определенное преимущество, поскольку длина волны синего света примерно в полтора раза короче по сравнению с красным (и почти вдвое - по сравнению с инфракрасными источниками). Таким образом, синее освещение позволяет камере зафиксировать более мелкие детали микрорельефа рабочей поверхности. Однако стоит учитывать, что в данном случае речь идет о деталях размером в десятые доли микрона, и сложно утверждать наверняка, позволяют ли параметры оптического тракта и светочувствительного сенсора реализовать это преимущество на практике.

Рис. 8. Microsoft Explorer Mouse - один из первых манипуляторов,
оснащенных сенсором BlueTrack

Есть немало скептиков, полагающих, что на использовании именно синего светодиода настояли вовсе не инженеры, а маркетологи. Ведь отличить цвет свечения под «брюшком» мыши сможет даже технически неграмотный пользователь (разумеется, если он не дальтоник). Остается лишь придумать и запустить в массы красивый миф о преимуществах синей подсветки над красной - благо с решением подобных задач опытные маркетологи справляются без труда.

Но вернемся к технике. Площадь пятна, изображение которого считывает камера сенсора BlueTrack, в 4 раза больше по сравнению с оптическим датчиком традиционной конструкции. Благодаря этому в «поле зрения» камеры попадает гораздо больше деталей, что, в свою очередь, обеспечивает более стабильную работу датчика на гладких поверхностях. Есть у BlueTrack и кое­что общее с лазерным сенсором: в объектив камеры попадает отраженный от рабочей поверхности луч.

Так или иначе, но желаемый результат был достигнут: мыши с датчиком BlueTrack действительно работают на многих поверхностях, неподвластных манипуляторам с традиционными оптическими и лазерными сенсорами, - в частности на материалах с гладким и глянцевым покрытием, на большинстве тканей и т.д.

В настоящее время сенсоры BlueTrack используются в ряде проводных и беспроводных мышей, выпускаемых компанией Microsoft, например в Comfort Mouse 3000/4500/6000, Wireless Mouse 2000/5000, Wireless Mobile Mouse 3500/4000/6000 и др. Несмотря на относительно широкий ассортимент представленных моделей, массовыми подобные манипуляторы пока не стали. Отчасти это объясняется их довольно высокой ценой: модель с сенсором BlueTrack обойдется дороже аналогов, оснащенных оптическим или лазерным датчиком.

В темном поле

В августе 2009 года швейцарская компания Logitech анонсировала беспроводные мыши Performance Mouse MX и Anywhere Mouse MX. Главной новинкой, внедренной в этих моделях, стал сенсор на базе технологии Darkfield Laser Tracking.

В отличие от своих коллег из Microsoft, разработчики Logitech предпочли взять за основу конструкцию лазерного сенсора. А принципиальным новшеством стало использование метода микроскопии в темном поле (отсюда и название технологии - Darkfield) вместо считывания отраженного от рабочей поверхности изображения.

Как видно на рис. 9, оптическая ось объектива видеокамеры этого сенсора перпендикулярна плоскости рабочей поверхности. Поскольку источник света установлен под углом к поверхности, то лучи от ее ровных участков отражаются под тем же углом и в объектив камеры не попадают. Таким образом, камера фиксирует только те объекты, которые рассеивают падающий на них свет, - микроскопические царапины, неровности, пылинки и т.п. В результате сенсор считывает изображение своеобразной «карты дефектов» поверхности, которая напоминает вид звездного неба (рис. 10).

Рис. 9. Благодаря применению метода микроскопии
в темном поле лазерный датчик Darkfield способен работать
на гладких и прозрачных поверхностях

Рис. 10. Так выглядит изображение,
считываемое светочувствительным сенсором
датчика Darkfield на гладкой поверхности,
изготовленной из прозрачного материала

В реальных условиях эксплуатации даже на чистой и идеально гладкой (как нам кажется) поверхности найдется достаточно много объектов, которые сумеет «разглядеть» камера сенсора. Это невидимые невооруженным глазом микроскопические трещины и царапины, частички пыли, ворсинки, отпечатки пальцев, остатки моющих средств и т.д. Благодаря этому сенсор на базе технологии Darkfield Laser Tracking способен работать даже на прозрачных и гладких поверхностях, не имеющих явно выраженного микрорельефа. Данное решение обеспечивает стабильную работу манипулятора на множестве разнообразных поверхностей, включая прозрачное стекло толщиной 4 мм и более.

Хотя после дебюта Darkfield Laser Tracking прошло уже больше двух лет, данная технология до сих пор является наиболее эффективной среди решений, применяемых в серийно выпускаемых манипуляторах. Однако у нее есть и существенный недостаток - высокая цена устройств. Обе модели, оснащенные такими сенсорами, представлены в высшей ценовой категории - так что ожидать ажиотажного спроса на эти устройства было бы чересчур оптимистично. Особенно учитывая то обстоятельство, что анонс этих продуктов состоялся в разгар экономического кризиса.

В настоящее время в продаже представлены лишь два манипулятора, оснащенные сенсорами Darkfield Laser Tracking, - Logitech Performance Mouse MX (рис. 11) и Anywhere Mouse MX.

Рис. 11. Беспроводная мышь Logitech Performance Mouse MX,
оснащенная сенсором на базе технологии Darkfield Laser Tracking

Строго по вертикали

В начале нынешнего года компания A4Tech представила первые серийные модели манипуляторов, оснащенные оптическими сенсорами V-Track Optic 2.0 (из соображений удобочитаемости далее по тексту мы будем называть их просто V-Track). Как и в обычном оптическом датчике, источником света в них служит красный светодиод. Однако в остальном конструкция этого сенсора имеет ряд принципиальных отличий.

Луч сфокусирован в узкий пучок (площадь отверстия в нижней панели корпуса мыши - всего 5 мм 2) и направлен строго перпендикулярно к плоскости рабочей поверхности. Камера датчика V-Track считывает отраженный луч; оптическая ось ее объектива перпендикулярна плоскости рабочей поверхности (рис. 12).

Рис. 12. Схема работы датчика V-Track Optic 2.0

Благодаря фокусировке луча на участке малой площади достигается высокая интенсивность светового потока - на порядок выше по сравнению с оптическими датчиками традиционной конструкции. Это позволяет получить максимально четкую картинку и зафиксировать даже малейшие детали микрорельефа поверхности. Благодаря этой особенности датчик V-Track стабильно работает на глянцевых и полированных поверхностях, где пасуют лазерные и оптические сенсоры традиционной конструкции. Кроме того, датчик V-Track отлично функционирует на неровных поверхностях, таких как мех, длинный ворс, грубые ткани и т.д., где обычно крайне нестабильно работают мыши с лазерными сенсорами.

Дополнительным преимуществом сенсора V-Track является низкий уровень энергопотребления (на 20-30% ниже по сравнению с оптическим датчиком традиционной конструкции), что позволяет увеличить время автономной работы беспроводных манипуляторов.

В настоящее время сенсоры V-Track применяются в целом ряде мышей компании A4Tech, включая как проводные (N-770FX, N-551FX, OP-530NU, OP-560NU и т.д.), так и беспроводные модели (G9-500F, G10-770F, G10-810F и др.). Эти манипуляторы представлены в низшем и среднем ценовых сегментах. Цены на младшие модели с датчиками V-Track вполне сопоставимы со стоимостью мышей аналогичного класса, оборудованных оптическими сенсорами традиционной конструкции.

«Синеглазые» мыши, версия Genius

Еще одна новинка нынешнего года - оптический сенсор BlueEye Tracking. Его разработали инженеры компании Kye Systems, которая хорошо известна российским пользователям по широкому спектру продуктов, выпускаемых под торговой маркой Genius.

Конструкция датчика BlueEye Tracking, по сути, представляет собой усовершенствованную версию традиционного оптического сенсора, но есть пара принципиальных отличий. Первое заключается в том, что вместо красного используется синий светодиод. Второе касается измененной схемы оптического тракта (рис. 13). Дополнительная линза обеспечивает фокусировку светового пучка, за счет чего площадь светового пятна, формируемого датчиком BlueEye Tracking, меньше, чем у оптического сенсора традиционной конструкции.

Рис. 13. Схема устройства сенсора BlueEye Tracking

Датчик BlueEye Tracking обеспечивает более высокую (по сравнению с оптическим сенсором традиционной конструкции) точность регистрации перемещений манипулятора и стабильно работает на большинстве поверхностей, потребляя при этом меньше электроэнергии.

В настоящее время сенсоры BlueEye Tracking применяются в беспроводных мышах Genius Navigator 905, Mini Navigator 900, Traveler 8000/9000, Ergo 9000 и др. Кроме того, недавно компания выпустила проводной манипулятор DX-220, также оснащенный датчиком BlueEye Tracking. Все перечисленные модели относятся к средней ценовой категории. Учитывая розничные цены, их прямыми конкурентами являются мыши, оснащенные лазерными сенсорами.

Заключение

Итак, мы рассмотрели особенности устройства различных типов оптических датчиков регистрации перемещения, используемых в современных манипуляторах. За три последних года производители этих устройств внедрили сразу несколько новых решений, которые обладают заметными преимуществами по сравнению с традиционной оптической и лазерной технологиями. Впрочем, как показывает статистика продаж, при выборе манипулятора пользователи предпочитают консервативный подход, по-прежнему отдавая предпочтение мышам, оснащенным оптическим сенсором традиционной конструкции. Отчасти это можно объяснить доступной ценой таких моделей, а также невысокими требованиями, предъявляемыми к эксплуатационным характеристикам мыши большинством покупателей. Не исключено, что многие просто не знают о технологических новинках, уже внедренных в серийно выпускаемых моделях.

Мы надеемся, что данная публикация окажется полезной нашим читателям, а изложенная в ней информация позволит им лучше ориентироваться в многообразии существующих технологий. Кроме того, рекомендуем прочитать статью «Мышиный тест-драйв». В ней вы найдете подробную информацию о том, насколько хорошо манипуляторы с сенсорами различных типов работают на разных поверхностях.

Так называемые "мышки" - неотъемлемая часть современного компьютера. С появлением новых, старые, еще работоспособные, но устаревшие морально, как правило, выбрасываются или пылятся без дела в кладовке. Однако им можно найти применение, практически не изменяя электронную начинку. Сделать это совсем несложно.

"КРАСНЫЙ ГЛАЗ" ВКЛЮЧАЕТ СВЕТ

Оригинальными включателями света сегодня никого не удивишь, однако представленный ниже - из оптической компьютерной мыши, на мой взгляд, необычен и удобен в городской квартире по нескольким причинам:

Во-первых, миниатюрная мышь хорошо входит в гнездо под штатный клавишный включатель на стене;
- во-вторых, не требуется непосредственного контакта с включателем - достаточно провести пальцем (или иным предметом) на расстоянии 1,5 см от "красного глаза" подсветки;
- в третьих, устройство изначально обладает эффектом триггера: один раз провел пальцем - свет загорелся, провел второй раз - выключился;
- предусмотрен и индикатор реагирования - при проводе пальцем у "подсветки", она загорается в три раза ярче.

К оптической компьютерной мыши добавляется простейший усилитель тока на транзисторе с исполнительным реле в коллекторной цепи с тем, чтобы сигналы от мыши управляли лампой освещения мощностью до 200 Вт (ограничены параметрами реле) - об этом ниже. Поскольку практически все компьютерные оптические мыши построены по одной схеме и принципу работы, рассмотрим одну из них - Defender Optical 1330, представленную на фото 1.


Фото 1. Вид оптической мыши Defender Optical 1330 со снятой крышкой корпуса


Фото 2. Печатная плата оптической мыши Defender Optical 1330 со стороны оптической линзы


Фото 3. Приемо-передатчик RX-9 комплекта беспроводной клавиатуры и манипулятора оптической мыши


Фото 4. Установка беспроводной мышки для охраны сейфа


Фото 5. Сирена KPS-4519 в качестве звуковой сигнализации

Основное устройство позиционирования координат - микросборка с обозначением U2 А2051В0323, совмещенная с фотоприемником (в одном корпусе). С вывода 6 данной микросборки на светодиод красного цвета постоянно поступают импульсы с частотой около 1 кГц, поэтому даже когда оптическая мышь находится без движения на столе, видна красная, едва мерцающая "подсветка". Однако значение ее не только подсвечивать место, занимаемое мышью - для красоты. Светодиод - это передатчик, а приемником служит сама микросборка со встроенным в ее корпус электронным узлом. Когда отраженные от любой поверхности световые сигналы достигают фотоприемника, уровень напряжения на выводе 6 U2 падает до нуля, и светодиод загорается в полную силу. Именно такую реакцию мы видим у мышки на компьютерном столе при попытке ее перемещения.

Время горения светодиода в полную силу составляет 1,3 с (если нет более продолжительных воздействий на мышь). Одна из главных деталей оптической мыши, как ни странно, не электроника, а пластмассовая линза, изогнутая под определенным радиусом (см. фото 2), без нее мышка "слепнет".

Устанавливать в стенную нишу под штатный выключатель мышку нужно в собранном корпусе, который надежно фиксирует оптическую линзу со стороны основания (подложки) мыши.

Когда на фотоприемник поступает отраженный от препятствия (вашего пальца, ладони) сигнал, на выводах 15 и 16 микросборки U1 НТ82М398А (и соответственно на выводах 4 и 5 микросборки U2) изменяется уровень логического сигнала на противоположный. Причем это не инверсные выводы, а независимые друг от друга. Изменение сигнала на них происходит в зависимости от вертикального или горизонтального перемещения мыши. Управляющий сигнал для исполнительного устройства (низкий уровень сменяется на высокий, вывод 15 U1 и вывод 4 U2) подключают к исполнительному устройству, к точке А.

Открывание транзистора и включение реле происходит при высоком логическом уровне в точке А. Диод VD1 защищает обмотку реле от бросков обратного тока. Резистор R1 ограничивает ток в базе транзистора. Реле может управлять не только лампой освещения, но и любой нагрузкой с током до 3 А. Источник питания - стабилизированный, с напряжением 5 В ±20%. Транзистор можно заменить на КТ603, КТ940, КТ972 с любым буквенным индексом, а исполнительное реле К1 - на РМК-11105, TRU-5VDC-SB-SL или аналогичное на напряжение срабатывания 4-5 В.


Рис. 1. Усилитель тока с исполнительным реле, управляющим нагрузкой в сети 220 В


Рис. 2. Схема адаптера для звуковой сигнализации открывания сейфа

Четырехпроводный кабель частично отпаивают от платы в месте соединения со штатным разъемом и перепаивают два провода (зеленый и белый к выводам 15 и 16 микросборки U1 со стороны элементов (не печатного монтажа), так как иначе провода будут мешать установке платы в корпус мыши.

Изначальная распайка разъема на плате мыши: 1-й вывод - общий провод, 2-й вывод - питание "+5 В", 3-й и 4-й -выходные импульсы.

Если схема и печатная плата у вашей мыши не соответствуют представленной на примере Defender Optical 1330, достаточно взять любой осциллограф или логический пробник (индицирующий хотя бы два основных состояния - высокое и низкое) и опытным путем найти на плате точки с управляющим сигналом.

Подойдет любая оптическая мышь для ПК, поэтому нет разницы какой разъем находится в конце соединительного кабеля компьютерной мыши, его все равно придется снимать. Также можно применить и беспроводные мыши (с передачей сигнала по радиоканалу, к примеру, из комплекта А4 TECH - адаптер мыши RX-9 5 В 180 мА), в части позиционирования координат у них такой же принцип работы, как и у проводных.

МЫШЬ-СТОРОЖ

Сейчас наступает новая волна смены поколений распространенного компьютерного манипулятора: "хвостатые" (с проводами) оптические мыши уступают дорогу своим беспроводным аналогам. К примеру, актуальны беспроводные оптические манилуляторы-мышки RP-650Z в комплекте с беспроводной клавиатурой (с эргономичным расположением основных клавиш и 19-ю дополнительными перепрограммируемыми кнопками). Сенсор фирмы Agilent Technologies, использованный в мышке RP-650Z, является лидером данного сектора рынка.

Оптическое разрешение мышки равно 800 dpi - этого вполне достаточно для хорошей работы. Приемо-передатчик радиосигнала и зарядник аккумуляторов типа АА с переключателем для быстрой зарядки, размещены в одном корпусе (фото 3). Этот блок подключается к USB-порту.

Фирма A4Tech маркирует свои манипуляторы индивидуальным электронным кодом, благодаря которому на одном канале приема могут соседствовать до 256 манипуляторов или клавиатур. Подобное техническое решение сужает пропускную полосу передачи данных, но при максимальном радиусе уверенного приема в 2 метра это не критично.

Необычный вариант использования беспроводной мыши - в качестве сигнализатора открывания сейфа, работы стиральной машины и даже... холодильника представлен ниже. Все эти варианты основаны на микросмещении предмета и даже на эффекте детонации. При установке мыши на металлическую дверь получится сигнализатор ее открывания или воздействия (еще один вариант применения).

Должен заметить, что не менее эффективный сигнализатор может быть получен, если в качестве мыши установить на контролируемую поверхность автомобильный датчик удара; он также срабатывает от детонации или механического воздействия на контролируемую поверхность, а его современные модели имеют даже несколько уровней регулировки чувствительности. В компьютерной мышке этой опции нет по определению ее первого и основного назначения, но это и не важно; ведь мы рассматриваем ее необычное применение.

Я установил беспроводную мышь RP-650Z (фирмы А4Тес11) на переднюю стенку сейфа, в котором хранится охотничье оружие, хотя хранить в нем можно что угодно (фото 4).

Сейф стоит во встроенном шкафу (ниша в стене городской квартиры); благодаря беспроводной технологии нет необходимости в проводах. В пределах 2 метров расположен приемо-передатчик радиосигнала (см. фото 3), который соединен с устройством-адаптером (схема на рис. 2).

Распайка разъема для USB порта относительно выше рассмотренного варианта не отличается. В беспроводной мышке RP-650Z управляющий сигнал (при смещении мыши уровень в данной модели меняется с высокого на низкий) берут с вывода 4 единственной микросборки UM1 (обозначение на плате). Поэтому в данном случае потребуется иная схема усилителя тока (см. рис. 2). Теперь при открывании сейфа и даже любом механическом воздействии на него (смещающем на доли миллиметра датчик-мышь) сработает устройство охраны.

В качестве НА1 применен звуковой капсюль со встроенным генератором звуковой частоты, подключать его надо строго в соответствии с полярностью. Транзистор VT1 р-n-р проводимости открывается тогда, когда напряжение в точке А близко к нулю, то есть в момент смещения мыши. Можно использовать и сирену KPS-4519 (фото 5), поскольку при приложенном питании 12 В она дает достаточную громкость звука для того, чтобы услышать его в соседних помещениях (более 80 дБ). Подключать сирену надо в соответствии с полярностью (красный провод - к "+" питания).

Два слова о закреплении мыши. На нижнюю часть ее корпуса, не закрывая светодиод и линзу, приклеивается магнит (от рекламных магнитов на холодильник). Теперь мышь надежно фиксируется на любой металлической поверхности (холодильника, стиральной машины и др.). При попытке ее снять также сработает сигнализация, сообщая владельцу о несанкционированном доступе к сейфу.

Благодаря "беспроводности" пользователь имеет возможность как угодно устанавливать мышь, удаляя ее от приемника на разумное расстояние, не заботясь о соединительных проводах. Вариантов применения данной технологии может быть сколь угодно много, и они ограничиваются лишь вашей фантазией.

Читайте и пишите полезные

В простой компьютерной мышке имеется пара оптических датчиков, их можно применить в других целях. Такие же датчики используются например, чтобы определять положение какого то предмета, заперта ли дверь, или считывать количество оборотов вала. Самый оптимальный и удобный вариант, это использование уже готовой платы и микросхемы, особенно тогда, когда в системе нужно использование микроконтроллера, в них как правило уже есть входы поддержки интерфейса RS - 232. В случае если у вас нет такой возможности, то можете использовать схему, которая указана выше.

Этот датчик поделен на две части: принимающая (VD2) и передающая (VD1). Передающей является светодиод, который работает в ИК диапазоне, а принимающая часть, это пара фотодиодов в одном корпусе. Два - нужны для того, чтобы была возможность определять в какую сторону вращается колёсеко мышки (вверх или вниз).

R1 - даёт ток на светодиод. R2 нужен, чтобы преобразовывать ток фотоприёмника в напряжение (не использованная ножка VD2 является выходом второго фотоприёмника). Напряжение на этом сопротивлении изменяется от 1.5 Вольт (свет отсутствует) до 3.4 Вольт (свет присутствует). Нижний предел в 1.5 Вольта очень велик, для того чтобы переключать цифровую TTL схему, потому что порог переключения равен 0.8 Вольт. По этой причине применяется операционный усилок DA1 в режиме компаратора. Напряжение порога для него даёт резистивный делитель R3 и R4, которое составляет 2.5 Вольт. Можете считать, что с выхода DA1 поступает уже цифровой сигнал.

Чтобы уменьшить случайные наводки и ложные срабатывания, можете ввести гистерезис в уровни переключения DA1. Чтобы это сделать, нужно будет включить условно показанные резисторы R6 и R7 (R6 на разрыв между DA1 и R2). Чем ближе будет номинал R6 к R7 тем шире петля гестерезиса и тем дальше друг от друга будут уровни переключения из «0» в «1» и из «1» в «0». Таким образом при приведённых номиналах уровень переключения из «0» в «1» 2.8 Вольт, из «1» в «0» 2.1 Вольт.

Для примера показана простая схема индикации из светодиода и инвектора DD1 . Когда между VD1 и VD2 будет распологаться предмет, который мешает свету проходить, то будет загораться светодиод VD3.

Нужно учитывать возможность внешних воздействий, которые могут мешать. Этот датчик будет хорошо принимать излучение, как на стороне передатчика так и с противоположной стороны. Схема довольно чувствительна, она может реагировать даже на настольную лампу, по этой причине датчик лучше поместить в какой нибудь корпус, который будет защищать его от света.